Difference between revisions of "Talk:Unit cell"

From GISAXS
Jump to: navigation, search
(Vectors)
(Vectors)
 
Line 103: Line 103:
 
     &= \frac{c}{\sin\gamma} \sqrt{1 + 2 \cos\alpha\cos\beta\cos\gamma - \cos^2 \alpha - \cos^2\beta -\cos^2\gamma}\\
 
     &= \frac{c}{\sin\gamma} \sqrt{1 + 2 \cos\alpha\cos\beta\cos\gamma - \cos^2 \alpha - \cos^2\beta -\cos^2\gamma}\\
 
     &= c \sqrt{\frac{1 + 2 \cos\alpha\cos\beta\cos\gamma - \cos^2 \alpha - \cos^2\beta -\cos^2\gamma}{\sin^2\gamma} }\\
 
     &= c \sqrt{\frac{1 + 2 \cos\alpha\cos\beta\cos\gamma - \cos^2 \alpha - \cos^2\beta -\cos^2\gamma}{\sin^2\gamma} }\\
    &= c \sqrt{\frac{1}{\sin^2\gamma} + \frac{2 \cos\alpha\cos\beta\cos\gamma}{\sin^2\gamma} - \frac{\cos^2 \alpha}{\sin^2\gamma} - \frac{\cos^2\beta -\cos^2\gamma}{\sin^2\gamma} }\\
 
    &= c \sqrt{\frac{1}{\sin^2\gamma} + \frac{2 \cos\alpha\cos\beta\cos\gamma}{\sin^2\gamma} - \frac{\cos^2 \alpha}{\sin^2\gamma} - \frac{\cos^2\beta}{\sin^2\gamma} - \frac{\cos^2\gamma}{\sin^2\gamma} }\\
 
 
     &= c \sqrt{\frac{1}{\sin^2\gamma} + \frac{2 \cos\alpha\cos\beta\cos\gamma}{\sin^2\gamma} - \frac{\cos^2 \alpha}{\sin^2\gamma} - \frac{\cos^2\beta}{\sin^2\gamma} - \frac{\cos^2\gamma}{\sin^2\gamma} }\\
 
     &= c \sqrt{\frac{1}{\sin^2\gamma} + \frac{2 \cos\alpha\cos\beta\cos\gamma}{\sin^2\gamma} - \frac{\cos^2 \alpha}{\sin^2\gamma} - \frac{\cos^2\beta}{\sin^2\gamma} - \frac{\cos^2\gamma}{\sin^2\gamma} }\\
 +
    &= c \sqrt{\frac{1-\cos^2\gamma}{\sin^2\gamma} + \frac{2 \cos\alpha\cos\beta\cos\gamma}{\sin^2\gamma} - \frac{\cos^2 \alpha}{\sin^2\gamma} - \frac{\cos^2\beta}{\sin^2\gamma}  }\\
 +
    &= c \sqrt{\frac{\sin^2\gamma}{\sin^2\gamma} + \frac{2 \cos\alpha\cos\beta\cos\gamma}{\sin^2\gamma} - \frac{\cos^2 \alpha}{\sin^2\gamma} - \frac{\cos^2\beta(\sin^2\gamma+\cos^2\gamma)}{\sin^2\gamma}  }\\
 +
    &= c \sqrt{1 + \frac{2 \cos\alpha\cos\beta\cos\gamma}{\sin^2\gamma} - \frac{\cos^2 \alpha}{\sin^2\gamma} - \frac{\cos^2\beta\sin^2\gamma}{\sin^2\gamma} -\frac{\cos^2\beta\cos^2\gamma}{\sin^2\gamma}  }\\
 +
    &= c \sqrt{1 - \cos^2\beta \frac{\sin^2\gamma}{\sin^2\gamma} - \frac{\cos^2 \alpha}{\sin^2\gamma} + \frac{2 \cos\alpha\cos\beta\cos\gamma}{\sin^2\gamma} -\frac{\cos^2\beta\cos^2\gamma}{\sin^2\gamma}  }\\
 +
    &= c \sqrt{1 - \cos^2\beta  - \frac{1}{\sin^2\gamma}\left( \cos^2 \alpha - 2 \cos\alpha\cos\beta\cos\gamma + \cos^2\beta\cos^2\gamma \right)}\\
 +
    &= c \sqrt{1 - \cos^2\beta  - \frac{1}{\sin^2\gamma}\left( \cos\alpha - \cos\beta\cos\gamma\right)\left( \cos\alpha - \cos\beta\cos\gamma\right)}\\
 +
    &= c \sqrt{1 - \cos^2\beta  - \left(\frac{ \cos\alpha - \cos\beta\cos\gamma}{\sin\gamma}\right)^2 }\\
 +
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Latest revision as of 10:26, 14 November 2022

Extra math expressions

A given real-space cubic lattice will have dimensions:

Such that the position of any particular cell within the infinite lattice is:

Where h, k, and l are indices. The corresponding inverse-space lattice would be:

In the case where :

Vectors

There are many equivalent ways to define/construct the Cartesian basis for the unit cell in real-space. The unit cell vectors can be written as:

According to this, the vectors can be written as:

which is mathematically equivalent.

According to:

The vectors are written as:

This is, again, an equivalent expression. The equivalence can be show by:

TBD: Reciprocal vector components

Calculate q_hkl generally

    def q_hkl(self, h, k, l):
        """Determines the position in reciprocal space for the given reflection."""
        
        # The 'unitcell' coordinate system assumes:
        #  a-axis lies along x-axis
        #  b-axis is in x-y plane
        #  c-axis is vertical (or at a tilt, depending on beta)
        
        # Convert from (unitcell) Cartesian to (unitcell) fractional coordinates
        reduced_volume = sqrt( 1 - (cos(self.alpha))**2 - (cos(self.beta))**2 - (cos(self.gamma))**2 + 2*cos(self.alpha)*cos(self.beta)*cos(self.gamma) )
        #volume = reduced_volume*self.lattice_spacing_a*self.lattice_spacing_b*self.lattice_spacing_c
        a = ( self.lattice_spacing_a , \
                0.0 , \
                0.0  )
        b = ( self.lattice_spacing_b*cos(self.gamma) , \
                self.lattice_spacing_b*sin(self.gamma) , \
                0.0 )
        c = ( self.lattice_spacing_c*cos(self.beta) , \
                self.lattice_spacing_c*( cos(self.alpha) - cos(self.beta)*cos(self.gamma) )/( sin(self.gamma) ) , \
                self.lattice_spacing_c*reduced_volume/( sin(self.gamma) ) )
        
        # Compute (unitcell) reciprocal-space lattice vectors
        volume = np.dot( a, np.cross(b,c) )
        u = np.cross( b, c ) / volume # Along qx
        v = np.cross( c, a ) / volume # Along qy
        w = np.cross( a, b ) / volume # Along qz
        
        qhkl_vector = 2*pi*( h*u + k*v + l*w )
        qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 )
        
        return (qhkl, qhkl_vector)

                
        
    def q_hkl_length(self, h, k, l):
        
        qhkl, qhkl_vector = self.q_hkl(h,k,l)
        #qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 )
        
        return qhkl