Difference between revisions of "Unit cell"

From GISAXS
Jump to: navigation, search
(Created page with "The '''unit cell''' is the basic building block of a crystal lattice (whether an atomic crystal or a nanoscale superlattice). Crystalline materials have a periodic str...")
 
(Angles)
Line 68: Line 68:
  
 
[[Image:Unit cell01.png|thumb|center|300px|From [http://en.wikipedia.org/wiki/Fractional_coordinates Fractional Coordinates (Wikipedia)]]]
 
[[Image:Unit cell01.png|thumb|center|300px|From [http://en.wikipedia.org/wiki/Fractional_coordinates Fractional Coordinates (Wikipedia)]]]
[[Image:Unit cell03.png|thumb|center|300px|From [http://ruby.colorado.edu/~smyth/G30102.html] ]]
 
  
 
===Reciprocal Vectors===
 
===Reciprocal Vectors===

Revision as of 16:57, 3 June 2014

The unit cell is the basic building block of a crystal lattice (whether an atomic crystal or a nanoscale superlattice). Crystalline materials have a periodic structure, with the unit cell being the minimal volume necessary to fully describe the repeating structure. There are a finite number of possible symmetries for the repeating unit cell.

Notation

  • Real space:
    • Crystal planes:
      • (hkl) denotes a plane of the crystal structure (and repetitions of that plane, with the given spacing). In cubic systems (but not others), the normal to the plane is [hkl]
      • {hkl} denotes the set of all planes that are equivalent to (hkl) by the symmetry of the lattice
    • Crystal directions:
      • [hkl] denotes a direction of a vector (in the basis of the direct lattice vectors)
      • denotes the set of all directions that are equivalent to [hkl] by symmetry (e.g. in cubic system <100> means [100, [010], [001], [-100], [0-10], [00-1])
    • hkl denotes a diffracting plane


  • Reciprocal space:
    • Reciprocal planes:
      • [hkl] denotes a plane
      • denotes the set of all planes that are equivalent to [hkl]
    • Reciprocal directions:
      • (hkl) denotes a particular direction (normal to plane (hkl) in real space)
      • {hkl} denotes the set of all directions that are equivalent to (hkl)
    • hkl denotes an indexed reflection

Math

Vectors

Relations

Volume

If a, b, and c are the parallelepiped edge lengths, and α, β, and γ are the internal angles between the edges, the volume is

The volume of a unit cell with all edge-length equal to unity is:

Angles

  • is the angle between and
  • is the angle between and
  • is the angle between and

Reciprocal Vectors

Vector components

Generally:

With components:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{u} & = ... \\ \mathbf{v} & = ... \\ \mathbf{w} & = \frac{\mathbf{a}\times\mathbf{b}}{\mathbf{a}\cdot (\mathbf{b}\times\mathbf{c}) } \\ & =\frac{1}{V} \mathbf{a}\times\mathbf{b} \\ & =\frac{1}{V} \begin{bmatrix} 0 \\ 0 \\ a b \sin{\gamma} \end{bmatrix} \\ \end{alignat} }

Examples

Cubic

Since , , and:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{a} & = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{b} & = \begin{bmatrix} 0 \\ b \\ 0 \end{bmatrix} \\ \mathbf{c} & = \begin{bmatrix} 0 \\ 0 \\ c \end{bmatrix} \\ \end{alignat} }

And in reciprocal-space:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{u} & =\frac{1}{V} \mathbf{b}\times\mathbf{c} & =\frac{1}{V} \begin{bmatrix} b c \\ 0 \\ 0 \end{bmatrix} & = \begin{bmatrix} \frac{1}{a} \\ 0 \\ 0 \end{bmatrix}\\ \mathbf{v} & =\frac{1}{V} \mathbf{c}\times\mathbf{a} & =\frac{1}{V} \begin{bmatrix} 0 \\ a c \\ 0 \end{bmatrix} & = \begin{bmatrix} 0 \\ \frac{1}{b} \\ 0 \end{bmatrix}\\ \mathbf{w} & =\frac{1}{V} \mathbf{a}\times\mathbf{b} & =\frac{1}{V} \begin{bmatrix} 0 \\ 0 \\ a b \end{bmatrix} & = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{c} \end{bmatrix}\\ \end{alignat} }

So:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\ & = (2 \pi h)\begin{bmatrix} \frac{1}{a} \\ 0 \\ 0 \end{bmatrix} + (2 \pi k)\begin{bmatrix} 0 \\ \frac{1}{b} \\ 0 \end{bmatrix} + (2 \pi l)\begin{bmatrix} 0 \\ 0 \\ \frac{1}{c} \end{bmatrix} \\ & = \begin{bmatrix} \frac{2 \pi h}{a} \\ \frac{2 \pi k}{b} \\ \frac{2 \pi l}{c} \end{bmatrix} \end{alignat} }

Hexagonal

Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=\beta=90^{\circ}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma=60^{\circ}} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V=\frac{\sqrt{3}}{2}abc} , and:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{a} & = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{b} & = \begin{bmatrix} \frac{1}{2}b \\ \frac{\sqrt{3}}{2} b \\ 0 \end{bmatrix} \\ \mathbf{c} & = \begin{bmatrix} 0 \\ 0 \\ c \end{bmatrix} \\ \end{alignat} }

And in reciprocal-space:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{u} & =\frac{1}{V} \mathbf{b}\times\mathbf{c} & =\frac{1}{V} \begin{bmatrix} \frac{\sqrt{3}}{2} b c \\ -\frac{1}{2} b c \\ 0 \end{bmatrix} & = \begin{bmatrix} \frac{1}{a} \\ \frac{1}{\sqrt{3}a} \\ 0 \end{bmatrix}\\ \mathbf{v} & =\frac{1}{V} \mathbf{c}\times\mathbf{a} & =\frac{1}{V} \begin{bmatrix} 0 \\ a c \\ 0 \end{bmatrix} & = \begin{bmatrix} 0 \\ \frac{2}{\sqrt{3}b} \\ 0 \end{bmatrix}\\ \mathbf{w} & =\frac{1}{V} \mathbf{a}\times\mathbf{b} & =\frac{1}{V} \begin{bmatrix} 0 \\ 0 \\ \frac{\sqrt{3}}{2} a b \end{bmatrix} & = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{c} \end{bmatrix}\\ \end{alignat} }

So:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\ & = (2 \pi h)\begin{bmatrix} \frac{1}{a} \\ \frac{1}{\sqrt{3}a} \\ 0 \end{bmatrix} + (2 \pi k)\begin{bmatrix} 0 \\ \frac{2}{\sqrt{3}b} \\ 0 \end{bmatrix} + (2 \pi l)\begin{bmatrix} 0 \\ 0 \\ \frac{1}{c} \end{bmatrix} \\ & = \begin{bmatrix} \frac{2 \pi h}{a} \\ \frac{2 \pi h}{\sqrt{3}a} + \frac{4 \pi k}{\sqrt{3}b} \\ \frac{2 \pi l}{c} \end{bmatrix} \\ & = \begin{bmatrix} \frac{2 \pi h}{a} \\ \frac{2 \pi (h + 2 k)}{\sqrt{3}a} \\ \frac{2 \pi l}{c} \end{bmatrix} \end{alignat} }