Difference between revisions of "Example:Particle spacing from peak position"
KevinYager (talk | contribs) (→BCC 110) |
KevinYager (talk | contribs) (→BCC 110) |
||
Line 23: | Line 23: | ||
</math> | </math> | ||
[[Lattice:BCC|Note that for BCC]], the particle-particle distance is given by: | [[Lattice:BCC|Note that for BCC]], the particle-particle distance is given by: | ||
− | :<math>d_{nn}= | + | :<math>d_{nn} = \sqrt{3}a /2</math> |
So we expect: | So we expect: | ||
:<math> | :<math> | ||
Line 31: | Line 31: | ||
& = \frac{ \sqrt{3} d_{110} \sqrt{2} }{2} \\ | & = \frac{ \sqrt{3} d_{110} \sqrt{2} }{2} \\ | ||
& = \frac{ \sqrt{6} d_{110} }{2} \\ | & = \frac{ \sqrt{6} d_{110} }{2} \\ | ||
− | & = \frac{ \sqrt{6} (2 \pi / q_{110} | + | & = \frac{ \sqrt{6} (2 \pi / q_{110} ) }{2} \\ |
& = \frac{ \pi \sqrt{6} }{q_{110}} \\ | & = \frac{ \pi \sqrt{6} }{q_{110}} \\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | Of course, we could also have written: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | d_{110} | ||
+ | & = \frac{a}{\sqrt{ 2 }} \\ | ||
+ | & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\ | ||
+ | & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | |||
+ | ===FCC 111=== | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | d_{111} | ||
+ | & = \frac{a}{\sqrt{ 1^2 + 1^2 + 1^2 }} \\ | ||
+ | & = \frac{a}{\sqrt{ 3 }} | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | And: | ||
+ | :<math>d_{nn}=\sqrt{2}a/2</math> | ||
+ | So: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | d_{nn} | ||
+ | & = \frac{ \sqrt{2}a }{2} \\ | ||
+ | & = \frac{ \sqrt{2} d_{111} \sqrt{3} }{2} \\ | ||
+ | & = \frac{ \sqrt{6} d_{111} }{2} \\ | ||
+ | & = \frac{ \pi \sqrt{6} }{q_{111}} \\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | Or: | ||
+ | \begin{alignat}{2} | ||
+ | d_{110} | ||
+ | & = \frac{a}{\sqrt{ 2 }} \\ | ||
+ | & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\ | ||
+ | & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\ | ||
\end{alignat} | \end{alignat} | ||
</math> | </math> |
Revision as of 14:36, 2 September 2014
Consider the case of trying to measure the particle-particle spacing from the q-value of a particular peak. The interpretation of the q value of course depends upon the packing of the particles; i.e. the unit cell. Consider a cubic unit cell (SC, BCC, FCC). Note that in general:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \left( \frac{1}{d_{hkl}} \right )^2 = \left(\frac{h}{a}\right)^2 + \left(\frac{k}{b}\right)^2 + \left(\frac{l}{c}\right)^2 \end{alignat} }
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=2 \pi / d} , and since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=b=c} , the realspace spacing of planes is:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} d_{hkl} & = \frac{a}{\sqrt{ h^2 + k^2 + l^2 }} \end{alignat} }
BCC 110
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} d_{110} & = \frac{a}{\sqrt{ 1^2 + 1^2 + 0^2 }} \\ & = \frac{a}{\sqrt{ 2 }} \end{alignat} }
Note that for BCC, the particle-particle distance is given by:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_{nn} = \sqrt{3}a /2}
So we expect:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} d_{nn} & = \frac{ \sqrt{3}a }{2} \\ & = \frac{ \sqrt{3} d_{110} \sqrt{2} }{2} \\ & = \frac{ \sqrt{6} d_{110} }{2} \\ & = \frac{ \sqrt{6} (2 \pi / q_{110} ) }{2} \\ & = \frac{ \pi \sqrt{6} }{q_{110}} \\ \end{alignat} }
Of course, we could also have written:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} d_{110} & = \frac{a}{\sqrt{ 2 }} \\ & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\ & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\ \end{alignat} }
FCC 111
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} d_{111} & = \frac{a}{\sqrt{ 1^2 + 1^2 + 1^2 }} \\ & = \frac{a}{\sqrt{ 3 }} \end{alignat} }
And:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_{nn}=\sqrt{2}a/2}
So:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} d_{nn} & = \frac{ \sqrt{2}a }{2} \\ & = \frac{ \sqrt{2} d_{111} \sqrt{3} }{2} \\ & = \frac{ \sqrt{6} d_{111} }{2} \\ & = \frac{ \pi \sqrt{6} }{q_{111}} \\ \end{alignat} }
Or: \begin{alignat}{2} d_{110}
& = \frac{a}{\sqrt{ 2 }} \\ & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\ & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\
\end{alignat} </math>