Difference between revisions of "Peak shape"
KevinYager (talk | contribs) (→Literature Examples) |
KevinYager (talk | contribs) (→Literature Examples) |
||
Line 61: | Line 61: | ||
==Literature Examples== | ==Literature Examples== | ||
− | ===Warren/Averbach paracrystal=== | + | ===Warren/Averbach [[paracrystal]]=== |
* B. E. Warren [http://www.sciencedirect.com/science/article/pii/0502820559900152 X-RAY STUDIES OF DEFORMED METALS] ''Progress in Metal Physics'' '''1959''', 8, 174-202 [http://dx.doi.org/10.1016/0502-8205(59)90015-2 doi: 10.1016/0502-8205(59)90015-2] | * B. E. Warren [http://www.sciencedirect.com/science/article/pii/0502820559900152 X-RAY STUDIES OF DEFORMED METALS] ''Progress in Metal Physics'' '''1959''', 8, 174-202 [http://dx.doi.org/10.1016/0502-8205(59)90015-2 doi: 10.1016/0502-8205(59)90015-2] | ||
* B.E. Warren, B.L. Averbach [http://scitation.aip.org/content/aip/journal/jap/21/6/10.1063/1.1699713?ver=pdfcov The Effect of Cold‐Work Distortion on X‐Ray Patterns] ''J. Appl. Phys.'' '''1950''', 21, 595 [http://dx.doi.org/10.1063/1.1699713 doi: 10.1063/1.1699713] | * B.E. Warren, B.L. Averbach [http://scitation.aip.org/content/aip/journal/jap/21/6/10.1063/1.1699713?ver=pdfcov The Effect of Cold‐Work Distortion on X‐Ray Patterns] ''J. Appl. Phys.'' '''1950''', 21, 595 [http://dx.doi.org/10.1063/1.1699713 doi: 10.1063/1.1699713] | ||
Line 68: | Line 68: | ||
* T.J. Prosa , J. Moulton , A.J. Heeger, and M.J. Winokur [http://pubs.acs.org/doi/abs/10.1021/ma981059h Diffraction Line-Shape Analysis of Poly(3-dodecylthiophene): A Study of Layer Disorder through the Liquid Crystalline Polymer Transition] ''Macromolecules'' '''1999''', 32 (12), 4000-4009 [http://dx.doi.org/10.1021/ma981059h doi: 10.1021/ma981059h] | * T.J. Prosa , J. Moulton , A.J. Heeger, and M.J. Winokur [http://pubs.acs.org/doi/abs/10.1021/ma981059h Diffraction Line-Shape Analysis of Poly(3-dodecylthiophene): A Study of Layer Disorder through the Liquid Crystalline Polymer Transition] ''Macromolecules'' '''1999''', 32 (12), 4000-4009 [http://dx.doi.org/10.1021/ma981059h doi: 10.1021/ma981059h] | ||
* Rodrigo Noriega, Jonathan Rivnay, Koen Vandewal, Felix P. V. Koch, Natalie Stingelin, Paul Smith, Michael F. Toney & Alberto Salleo [http://www.nature.com/nmat/journal/v12/n11/full/nmat3722.html#supplementary-information A general relationship between disorder, aggregation and charge transport in conjugated polymers] ''Nature Materials'' '''2013''', 12, 1038-1044 [http://dx.doi.org/10.1038/nmat3722 doi: 10.1038/nmat3722]; see also [http://www.nature.com/nmat/journal/v12/n11/extref/nmat3722-s1.pdf Supplementary Information]. | * Rodrigo Noriega, Jonathan Rivnay, Koen Vandewal, Felix P. V. Koch, Natalie Stingelin, Paul Smith, Michael F. Toney & Alberto Salleo [http://www.nature.com/nmat/journal/v12/n11/full/nmat3722.html#supplementary-information A general relationship between disorder, aggregation and charge transport in conjugated polymers] ''Nature Materials'' '''2013''', 12, 1038-1044 [http://dx.doi.org/10.1038/nmat3722 doi: 10.1038/nmat3722]; see also [http://www.nature.com/nmat/journal/v12/n11/extref/nmat3722-s1.pdf Supplementary Information]. | ||
+ | ===Williamson/Hall=== | ||
+ | * G.K. Williamson, W.H. Hall [http://www.sciencedirect.com/science/article/pii/0001616053900066 X-ray line broadening from filed aluminium and wolfram] ''Acta Metallurgica'' '''1953''', 1 (1), 22-31. | ||
==See Also== | ==See Also== | ||
* [[Scherrer grain size analysis]]: Converting the peak width into a measure of the structural coherence length (grain size) | * [[Scherrer grain size analysis]]: Converting the peak width into a measure of the structural coherence length (grain size) | ||
* [http://prism.mit.edu/xray/oldsite/CrystalSizeAnalysis.ppt Estimating Crystallite Size Using XRD], Scott A. Speakman, MIT. | * [http://prism.mit.edu/xray/oldsite/CrystalSizeAnalysis.ppt Estimating Crystallite Size Using XRD], Scott A. Speakman, MIT. |
Revision as of 10:31, 8 September 2014
The peak width observed in x-ray scattering can be related to the grain size of the ordered structure giving rise to the scattering peak. More generally, the peak shape also encodes information about the sample order. Thus, peak shape analysis can be used to extract higher-order information.
Note also that instrumental resolution contributes to peak width, and also to peak shape. Scattering peaks are thus sometimes fit using functions that include two contributes (e.g. a Gaussian, representing material grain size, plus a Lorentzian, representing instrumental resolution).
Contents
Generalized Peak Shape
A generalized peak shape can be computed using:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} L_{hkl}(q) & = \frac{2}{\pi\delta} \prod_{n=0}^{\infty}{\left( 1 + \frac{\gamma_{\nu}^2}{(n+\nu/2)^2} \frac{4 q_s^2}{\pi^2\delta^2} \right)^{-1}} \\ & = \frac{2}{\pi\delta} \left| \frac{ \Gamma\left[\nu/2 + i\gamma_{\nu}(4q_s^2/\pi^2\delta^2)^2\right] }{ \Gamma\left[\nu/2\right] } \right|^2 \end{alignat} }
Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_s=(q-q_{hkl})} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} describes the peak width, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} describes the peak shape. The parameter Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{\nu}} is a ratio of gamma functions:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{\nu} = \sqrt{\pi}\frac{\Gamma\left[ (\nu+1)/2 \right]}{\Gamma\left[ \nu+/2 \right]} }
The limiting cases for peak shape are:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{hkl}(q_s) = \left\{ \begin{array}{c l l} \frac{\delta/2\pi}{q_s^2+(\delta/2)^2} & \mathrm{for} \,\, \nu\to0 & \mathrm{(Lorentzian)} \\ \frac{2}{\pi\delta}\exp\left[ -\frac{4q_s^2}{\pi\delta^2} \right] & \mathrm{for} \,\, \nu\to\infty & \mathrm{(Gaussian)} \\ \end{array} \right. }
Thus the parameter Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} allows one to vary continuously between a Lorentzian peak shape and a Gaussian peak shape. Note that for Lorentzian, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} describes the full-width at half-maximum (FWHM):
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_{\mathrm{lorentz}} = \mathrm{fwhm_{\mathrm{lorentz}}} }
The Gaussian form can be written a few different ways:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} L_{hkl,\mathrm{gauss}}(q_s) & = \frac{2}{\pi\delta}\exp\left[ -\frac{4q_s^2}{\pi\delta^2} \right] \\ & = \frac{1}{\sqrt{2\pi}\sigma}\exp\left[ -\frac{q_s^2}{2\sigma^2} \right] \\ & = \sqrt{\frac{\ln{2}}{\pi}}\frac{1}{\mathrm{fwhm}} \exp\left[ -\frac{4 \ln{2} q_s^2}{\mathrm{fwhm}^2} \right] \\ \end{alignat} }
where the width is described by:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_{\mathrm{gauss}} = \sqrt{\frac{8}{\pi}}\sigma_{\mathrm{gauss}} = \frac{\mathrm{fwhm}_{\mathrm{gauss}}}{\sqrt{\pi\ln{2} }}}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{\mathrm{gauss}} = \sqrt{\frac{\pi}{8}}\delta_{\mathrm{gauss}} = \frac{\mathrm{fwhm}_{\mathrm{gauss}}}{2\sqrt{2 \ln{2} }}}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{fwhm}_{\mathrm{gauss}} = 2\sqrt{2 \ln{2} } \sigma_{\mathrm{gauss}} = \sqrt{\pi\ln{2} } \delta_{\mathrm{gauss}}}
And note that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{2 \ln{2} } \approx } 2.35482004503...
Source
- Scattering Curves of Ordered Mesoscopic Materials S. Förster, A. Timmann, M. Konrad, C. Schellbach, A. Meyer, S.S. Funari, P. Mulvaney, R. Knott, J. Phys. Chem. B, 2005, 109 (4), pp 1347–1360 DOI: 10.1021/jp0467494
Literature Examples
Warren/Averbach paracrystal
- B. E. Warren X-RAY STUDIES OF DEFORMED METALS Progress in Metal Physics 1959, 8, 174-202 doi: 10.1016/0502-8205(59)90015-2
- B.E. Warren, B.L. Averbach The Effect of Cold‐Work Distortion on X‐Ray Patterns J. Appl. Phys. 1950, 21, 595 doi: 10.1063/1.1699713
- B.E. Warren, B.L. Averbach The Separation of Cold‐Work Distortion and Particle Size Broadening in X‐Ray Patterns J. Appl. Phys. 1952, 23, 497 doi: 10.1063/1.1702234
- B. Crist and J.B. Cohen Fourier Analysis of Polymer X-Ray Diffraction Patterns J. Poly. Sci: Poly. Phys. 1979, 17 (6), 1001-1010 doi: 10.1002/pol.1979.180170609
- T.J. Prosa , J. Moulton , A.J. Heeger, and M.J. Winokur Diffraction Line-Shape Analysis of Poly(3-dodecylthiophene): A Study of Layer Disorder through the Liquid Crystalline Polymer Transition Macromolecules 1999, 32 (12), 4000-4009 doi: 10.1021/ma981059h
- Rodrigo Noriega, Jonathan Rivnay, Koen Vandewal, Felix P. V. Koch, Natalie Stingelin, Paul Smith, Michael F. Toney & Alberto Salleo A general relationship between disorder, aggregation and charge transport in conjugated polymers Nature Materials 2013, 12, 1038-1044 doi: 10.1038/nmat3722; see also Supplementary Information.
Williamson/Hall
- G.K. Williamson, W.H. Hall X-ray line broadening from filed aluminium and wolfram Acta Metallurgica 1953, 1 (1), 22-31.
See Also
- Scherrer grain size analysis: Converting the peak width into a measure of the structural coherence length (grain size)
- Estimating Crystallite Size Using XRD, Scott A. Speakman, MIT.