Difference between revisions of "Peak shape"

From GISAXS
Jump to: navigation, search
(Literature Examples)
(Grain Size Distribution)
Line 78: Line 78:
 
* J. I. Langford, D. Louër and P. Scardi, [http://journals.iucr.org/j/issues/2000/03/02/th0047/index.html Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting] [http://dx.doi.org/10.1107/S002188980000460X doi: 10.1107/S002188980000460X]
 
* J. I. Langford, D. Louër and P. Scardi, [http://journals.iucr.org/j/issues/2000/03/02/th0047/index.html Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting] [http://dx.doi.org/10.1107/S002188980000460X doi: 10.1107/S002188980000460X]
 
* T. Ungár, J. Gubicza, G. Ribárik and A. Borbély, [http://scripts.iucr.org/cgi-bin/paper?zm0085 Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals] ''J. Appl. Cryst.'' '''2001''', 34, 298-310 [http://dx.doi.org/10.1107/S0021889801003715 doi: 10.1107/S0021889801003715]
 
* T. Ungár, J. Gubicza, G. Ribárik and A. Borbély, [http://scripts.iucr.org/cgi-bin/paper?zm0085 Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals] ''J. Appl. Cryst.'' '''2001''', 34, 298-310 [http://dx.doi.org/10.1107/S0021889801003715 doi: 10.1107/S0021889801003715]
 +
====Fourier Analysis====
 +
* C.E. Kril and R. Birringer, [http://www.tandfonline.com/doi/abs/10.1080/01418619808224072#.VA3KbdbgX0M Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis] ''Philosophical Magazine A'' '''1998''', 77 (3), 621-640 [http://dx.doi.org/10.1080/01418619808224072 doi: 10.1080/01418619808224072]
  
 
===Other===
 
===Other===

Revision as of 11:27, 8 September 2014

Peak.png

The peak width observed in x-ray scattering can be related to the grain size of the ordered structure giving rise to the scattering peak. More generally, the peak shape also encodes information about the sample order. Thus, peak shape analysis can be used to extract higher-order information.

Note also that instrumental resolution contributes to peak width, and also to peak shape. Scattering peaks are thus sometimes fit using functions that include two contributes (e.g. a Gaussian, representing material grain size, plus a Lorentzian, representing instrumental resolution).

Generalized Peak Shape

A generalized peak shape can be computed using:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} L_{hkl}(q) & = \frac{2}{\pi\delta} \prod_{n=0}^{\infty}{\left( 1 + \frac{\gamma_{\nu}^2}{(n+\nu/2)^2} \frac{4 q_s^2}{\pi^2\delta^2} \right)^{-1}} \\ & = \frac{2}{\pi\delta} \left| \frac{ \Gamma\left[\nu/2 + i\gamma_{\nu}(4q_s^2/\pi^2\delta^2)^2\right] }{ \Gamma\left[\nu/2\right] } \right|^2 \end{alignat} }

Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_s=(q-q_{hkl})} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} describes the peak width, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} describes the peak shape. The parameter Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{\nu}} is a ratio of gamma functions:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{\nu} = \sqrt{\pi}\frac{\Gamma\left[ (\nu+1)/2 \right]}{\Gamma\left[ \nu+/2 \right]} }

The limiting cases for peak shape are:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{hkl}(q_s) = \left\{ \begin{array}{c l l} \frac{\delta/2\pi}{q_s^2+(\delta/2)^2} & \mathrm{for} \,\, \nu\to0 & \mathrm{(Lorentzian)} \\ \frac{2}{\pi\delta}\exp\left[ -\frac{4q_s^2}{\pi\delta^2} \right] & \mathrm{for} \,\, \nu\to\infty & \mathrm{(Gaussian)} \\ \end{array} \right. }

Thus the parameter Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} allows one to vary continuously between a Lorentzian peak shape and a Gaussian peak shape. Note that for Lorentzian, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} describes the full-width at half-maximum (FWHM):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_{\mathrm{lorentz}} = \mathrm{fwhm_{\mathrm{lorentz}}} }

The Gaussian form can be written a few different ways:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} L_{hkl,\mathrm{gauss}}(q_s) & = \frac{2}{\pi\delta}\exp\left[ -\frac{4q_s^2}{\pi\delta^2} \right] \\ & = \frac{1}{\sqrt{2\pi}\sigma}\exp\left[ -\frac{q_s^2}{2\sigma^2} \right] \\ & = \sqrt{\frac{\ln{2}}{\pi}}\frac{1}{\mathrm{fwhm}} \exp\left[ -\frac{4 \ln{2} q_s^2}{\mathrm{fwhm}^2} \right] \\ \end{alignat} }

where the width is described by:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_{\mathrm{gauss}} = \sqrt{\frac{8}{\pi}}\sigma_{\mathrm{gauss}} = \frac{\mathrm{fwhm}_{\mathrm{gauss}}}{\sqrt{\pi\ln{2} }}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{\mathrm{gauss}} = \sqrt{\frac{\pi}{8}}\delta_{\mathrm{gauss}} = \frac{\mathrm{fwhm}_{\mathrm{gauss}}}{2\sqrt{2 \ln{2} }}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{fwhm}_{\mathrm{gauss}} = 2\sqrt{2 \ln{2} } \sigma_{\mathrm{gauss}} = \sqrt{\pi\ln{2} } \delta_{\mathrm{gauss}}}

And note that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{2 \ln{2} } \approx } 2.35482004503...

Source

Literature Examples

Warren/Averbach paracrystal

Williamson/Hall

Grain Size Distribution

Fourier Analysis

Other

See Also