Difference between revisions of "Quantum Mechanics"

From GISAXS
Jump to: navigation, search
(Postulates)
Line 37: Line 37:
 
==[[Wave packet]]==
 
==[[Wave packet]]==
 
TBD
 
TBD
 +
 +
==Heisenberg Indeterminacy Relations==
 +
(Also known as [http://en.wikipedia.org/wiki/Uncertainty_principle Heisenberg Uncertainty Principle].)
 +
:<math>\Delta_{x}\Delta_{p} \geq \frac{\hbar}{2}</math>
 +
:<math>\Delta_{E}\Delta_{t} \geq \frac{\hbar}{2}</math>
  
 
==See Also==
 
==See Also==
 
* [http://en.wikipedia.org/wiki/Quantum_mechanics Wikipedia: Quantum Mechanics]
 
* [http://en.wikipedia.org/wiki/Quantum_mechanics Wikipedia: Quantum Mechanics]

Revision as of 16:04, 12 October 2014

Quantum mechanics is a theory that describes the interactions of all particles and systems. It underlies all physical phenomena, including scattering.


Wavefunction

A quantum system is completely specified by its Wave Function:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) }

The wavefunction is typically normalized:

Integral Notation Dirac Notation
 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int | \psi(x) |^2 \mathrm{d}x = 1}    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \psi | \psi \rangle = 1}  

The distribution of the particle described by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x)} is given by:

Integral Notation Dirac Notation
     

In the Copenhagen Interpretation, is the probability of finding the particle at location Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . In Universal Wave Function interpretations (e.g. MWI), Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pr(x)} can be thought of as the spatial distribution of the particle. The wavefunction contains all the information one can know about a system. It can thus be thought of as 'being' the particle/system in question. However, the wavefunction can be described in an infinite number of different ways. That is, there is not a unique basis for describing the wavefunction. So, for instance, one can describe the wavefunction using position-space or momentum-space:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) \longleftrightarrow \tilde{\psi} (k) }

These representations can be inter-related (c.f. Fourier transform):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) = \frac{1}{\sqrt{2 \pi}} \int \tilde{\psi}(k) e^{i k x } \mathrm{d}k }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\psi}(k) = \frac{1}{\sqrt{2 \pi}} \int {\psi}(x) e^{-i k x } \mathrm{d}x }

Wave packet

TBD

Heisenberg Indeterminacy Relations

(Also known as Heisenberg Uncertainty Principle.)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_{x}\Delta_{p} \geq \frac{\hbar}{2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_{E}\Delta_{t} \geq \frac{\hbar}{2}}

See Also