Difference between revisions of "Lattice:AlB2"

From GISAXS
Jump to: navigation, search
(Nano)
(Nano)
Line 38: Line 38:
  
 
====Nano====
 
====Nano====
* 4.3 nm and 2.3 nm Fe<sub>x</sub>Pt<sub>1−)x</sub> nanoparticles
+
* 4.3 nm and 2.3 nm Fe<sub>x</sub>Pt<sub>1−x</sub> nanoparticles
 
** Sra, A.K.; Ewers, T.D.; Xu, Q.; Zandbergen, H.; Schaak, R.E. [http://pubs.rsc.org/en/content/articlelanding/2006/cc/b515673d/unauth#!divAbstract One-pot synthesis of bi-disperse FePt nanoparticles and size-selective self-assembly into AB2, AB5, and AB13 superlattices] ''Chem. Commun.'' '''2006''', 750-752 [http://dx.doi.org/10.1039/B515673D doi: 10.1039/B515673D ]
 
** Sra, A.K.; Ewers, T.D.; Xu, Q.; Zandbergen, H.; Schaak, R.E. [http://pubs.rsc.org/en/content/articlelanding/2006/cc/b515673d/unauth#!divAbstract One-pot synthesis of bi-disperse FePt nanoparticles and size-selective self-assembly into AB2, AB5, and AB13 superlattices] ''Chem. Commun.'' '''2006''', 750-752 [http://dx.doi.org/10.1039/B515673D doi: 10.1039/B515673D ]
 
* 15 nm Fe<sub>3</sub>O<sub>4</sub> and 6 nm FePt nanoparticles assembled at liquid interface
 
* 15 nm Fe<sub>3</sub>O<sub>4</sub> and 6 nm FePt nanoparticles assembled at liquid interface
 
** Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. [http://www.nature.com/nature/journal/v466/n7305/full/nature09188.html Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface] ''Nature'' '''2010''' 466, 474–477 [http://dx.doi.org/10.1038/nature09188 doi: 10.1038/nature09188]  
 
** Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. [http://www.nature.com/nature/journal/v466/n7305/full/nature09188.html Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface] ''Nature'' '''2010''' 466, 474–477 [http://dx.doi.org/10.1038/nature09188 doi: 10.1038/nature09188]  
 
** Korgel, B.A. [http://www.nature.com/nmat/journal/v9/n9/full/nmat2846.html Nanocrystal superlattices: Assembly at liquid interfaces], ''Nature Materials'' '''2010''', 9, 701-703 [http://dx.doi.org/10.1038/nmat2846 doi: 10.1038/nmat2846]
 
** Korgel, B.A. [http://www.nature.com/nmat/journal/v9/n9/full/nmat2846.html Nanocrystal superlattices: Assembly at liquid interfaces], ''Nature Materials'' '''2010''', 9, 701-703 [http://dx.doi.org/10.1038/nmat2846 doi: 10.1038/nmat2846]

Revision as of 10:32, 14 October 2014

AlB2 is a hexagonal lattice, with two distinct kinds of particles.

Symmetry

  • Crystal Family: Hexagonal
  • Space Group: P6/mmm, No. 191
  • Particles per unit cell: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=3}
    • 'inner' particles: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
    • 'corner' particles: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
  • Dimensionality: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=3}

Particle Positions (basis vectors)

There are 10 positions, with 3 particles in the unit cell

Particle A: corners

These are the corners of the hexagonal frame. There are 8 corner positions, which contributes a total of 1 particle.

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8 \, \mathrm{corners}: \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} = 1}
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(0,0,0\right), \, (0,0,1), \, (0,1,0), \, (1,0,0), \, (0,1,1), \, (1,0,1), \, (1,1,0), \, (1,1,1)}

Particle B: inner

These are the two inner particles.

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \, \mathrm{inner} \, \times \, 1 = 2}
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{1}{3},\frac{1}{3},\frac{1}{2} \right), \, \left(\frac{2}{3},\frac{2}{3},\frac{1}{2} \right),}

Particle Positions (Cartesian coordinates)

Particle A: corners

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(0,0,0\right), \, (0,0,c), \, \left(\frac{b}{2},\frac{\sqrt{3}b}{2},0 \right), \, (a,0,0), \, \left(\frac{b}{2},\frac{\sqrt{3}b}{2},c \right), \, (a,0,c), \, \left(a+\frac{b}{2},\frac{\sqrt{3}b}{2},0 \right), \, \left(a+\frac{b}{2},\frac{\sqrt{3}b}{2},c \right)}

Particle B: inner

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{a}{3}+\frac{b}{6},\frac{\sqrt{3}b}{6},\frac{c}{2} \right), \, \left(\frac{2a}{3}+\frac{b}{3},\frac{\sqrt{3}b}{3},\frac{c}{2} \right),}

Examples

Elemental

  • TBD

Atomic

Nano