| 
				   | 
				
| Line 43: | 
Line 43: | 
|   | | <math>\epsilon = \frac{m_a}{\rho N_a 2 r_e \lambda f_2 }</math>  |   | | <math>\epsilon = \frac{m_a}{\rho N_a 2 r_e \lambda f_2 }</math>  | 
|   | | <math>\epsilon = \frac{m_a}{\rho N_a \sigma}</math>  |   | | <math>\epsilon = \frac{m_a}{\rho N_a \sigma}</math>  | 
| − | |    | + | | <math>\epsilon = \frac{ \lambda m_a }{4 \pi M_a \beta}</math>  | 
|   | | <math>\epsilon = \frac{m_a }{2 M_a \lambda \mathrm{Im}(\mathrm{SLD})} </math>  |   | | <math>\epsilon = \frac{m_a }{2 M_a \lambda \mathrm{Im}(\mathrm{SLD})} </math>  | 
|   | |-  |   | |-  | 
| Line 51: | 
Line 51: | 
|   | | <math>\mu = \frac{\rho N_a}{m_a} 2 r_e \lambda f_2</math>  |   | | <math>\mu = \frac{\rho N_a}{m_a} 2 r_e \lambda f_2</math>  | 
|   | | <math>\mu = \frac{\rho N_a}{m_a} \sigma</math>  |   | | <math>\mu = \frac{\rho N_a}{m_a} \sigma</math>  | 
| − | |    | + | | <math>\mu = \frac{4 \pi M_a}{ \lambda m_a } \beta</math>  | 
|   | | <math>\mu = \frac{2 M_a \lambda}{m_a } \mathrm{Im}(\mathrm{SLD})</math>  |   | | <math>\mu = \frac{2 M_a \lambda}{m_a } \mathrm{Im}(\mathrm{SLD})</math>  | 
|   | |-  |   | |-  | 
| Line 59: | 
Line 59: | 
|   | | <math>\frac{\mu}{\rho} = \frac{N_a}{m_a} 2 r_e \lambda f_2</math>  |   | | <math>\frac{\mu}{\rho} = \frac{N_a}{m_a} 2 r_e \lambda f_2</math>  | 
|   | | <math>\frac{\mu}{\rho} = \frac{N_a}{m_a} \sigma</math>  |   | | <math>\frac{\mu}{\rho} = \frac{N_a}{m_a} \sigma</math>  | 
| − | | <math>\frac{\mu}{\rho} = </math>  | + | | <math>\frac{\mu}{\rho} = \frac{4 \pi M_a}{ \rho \lambda m_a } \beta</math>  | 
|   | | <math>\frac{\mu}{\rho} = \frac{2 M_a \lambda}{\rho m_a } \mathrm{Im}(\mathrm{SLD})</math>  |   | | <math>\frac{\mu}{\rho} = \frac{2 M_a \lambda}{\rho m_a } \mathrm{Im}(\mathrm{SLD})</math>  | 
|   | |-  |   | |-  | 
| Line 78: | 
Line 78: | 
|   | | <math>\sigma = \frac{2 \lambda M_a}{\rho N_a}\mathrm{Im}(\mathrm{SLD})</math>  |   | | <math>\sigma = \frac{2 \lambda M_a}{\rho N_a}\mathrm{Im}(\mathrm{SLD})</math>  | 
|   | |-  |   | |-  | 
| − | |    | + | | <math>\beta = \frac{ \lambda m_a }{4 \pi M_a \epsilon}</math>  | 
| − | |    | + | | <math>\beta = \frac{ \lambda m_a }{4 \pi M_a} \mu</math>  | 
| − | |    | + | | <math>\beta = \frac{ \rho \lambda m_a }{4 \pi M_a} \frac{\mu}{\rho}</math>  | 
|   | | <math>\beta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_2</math>  |   | | <math>\beta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_2</math>  | 
|   | | <math>\beta = \frac{ \rho N_a \lambda }{4 \pi M_a} \sigma</math>  |   | | <math>\beta = \frac{ \rho N_a \lambda }{4 \pi M_a} \sigma</math>  | 
		Revision as of 18:26, 6 June 2014
The absorption length or attenuation length in x-ray scattering is the distance over which the x-ray beam is absorbed. By convention, the absorption length ϵ is defined as the distance into a material where the beam flux has dropped to 1/e of its incident flux.
Absorption
The absorption follows a simple Beer-Lambert law:

The attenuation coefficient (or absorption coefficient) is simply the inverse of the absorption length; 

Calculating
The absorption length arises from the imaginary part of the atomic scattering factor, f2. It is closely related to the absorption cross-section, and the mass absorption coefficient. Specifically, the atomic photoabsorption cross-section can be computed via:

Where λ is the x-ray wavelength, and re is the classical electron radius. The attenuation coefficient is given by:

where ρ is density, Na is the Avogadro constant, and ma is the atomic molar mass. Note that the mass attenuation coefficient is simply 
.
Related forms
As can be seen, there are many related quantities which express the material's absorption:
- Absorption length 
, the distance over which the intensity falls to 1/e. 
- Attenuation coefficient 
, the characteristic inverse-distance for attenuation. 
- Mass attenuation coefficient 
, the density-scaled attenuation. 
- Absorptive atomic scattering factor 
, the intrinsic dissipative interaction of the material. 
- Atomic photoabsorption cross-section 
, the cross-section ('effective size') of the atom's x-ray absorption (capture) efficiency. 
- Imaginary refractive index 
, the resonant component of the refractive index. 
- Imaginary Scattering Length Density 
, the absorptive component of the scattering contrast. 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
See Also