|
|
Line 18: |
Line 18: |
| \begin{alignat}{2} | | \begin{alignat}{2} |
| 2 \theta_s = \Theta & = \arctan\left[ \frac{ \sqrt{x^2 + z^2}}{d} \right] \\ | | 2 \theta_s = \Theta & = \arctan\left[ \frac{ \sqrt{x^2 + z^2}}{d} \right] \\ |
− | & = \arctan\left[ \frac{ \sqrt{x^2 + z^2}}{d} \right] \\ | + | & = \arctan\left[ \frac{ \sqrt{(d \tan \theta_f)^2 + (d \tan \alpha_f^\prime )^2}}{d} \right] \\ |
| + | & = \arctan\left[ \sqrt{\tan^2 \theta_f + \tan^2 \alpha_f^\prime } \right] \\ |
| + | & = \arctan\left[ \sqrt{\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } } \right] \\ |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Line 30: |
Line 32: |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
| + | |
| ====later==== | | ====later==== |
| As a check: | | As a check: |
Revision as of 18:50, 29 December 2015
The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position
. The scattering angles are then:
![{\displaystyle {\begin{alignedat}{2}\theta _{f}&=\arctan \left[{\frac {x}{d}}\right]\\\alpha _{f}^{\prime }&=\arctan \left[{\frac {z}{d}}\right]\\\alpha _{f}&=\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/facc9ad57cd58f15e7403d40dc08f08815d3662b)
where
is the sample-detector distance, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \alpha_f ^{\prime} }
is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and
is the in-plane component (rotation about z-axis). The alternate angle,
, is the elevation angle in the plane defined by
. Also note that the full scattering angle is:
now
![{\displaystyle {\begin{alignedat}{2}2\theta _{s}=\Theta &=\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\\&=\arctan \left[{\frac {\sqrt {(d\tan \theta _{f})^{2}+(d\tan \alpha _{f}^{\prime })^{2}}}{d}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+\tan ^{2}\alpha _{f}^{\prime }}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+{\frac {\tan ^{2}\alpha _{f}}{\cos ^{2}\theta _{f}}}}}\right]\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce190aa4f7dd836349234c33033cb245c49d4f20)
The momentum transfer components are:

later
As a check:
![{\displaystyle {\begin{alignedat}{2}q&={\sqrt {q_{x}^{2}+q_{y}^{2}+q_{z}^{2}}}\\&={\frac {2\pi }{\lambda }}{\sqrt {\sin ^{2}\theta _{f}\cos ^{2}\alpha _{f}\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+\sin ^{2}\alpha _{f}}}\\{\frac {q}{k}}&={\sqrt {(\sin \theta _{f})^{2}(\cos \alpha _{f})^{2}\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+(\sin \alpha _{f})^{2}}}\\&={\sqrt {\left({\frac {x/d}{\sqrt {1+(x/d)^{2}}}}\right)^{2}\left(\cos \alpha _{f}\right)^{2}\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+\left(\sin \alpha _{f}\right)^{2}}}\\&=?\\&=?\\&=?\\&=?\\&=?\\&=?\\&={\frac {\sqrt {x^{2}+z^{2}}}{\sqrt {d^{2}+x^{2}+z^{2}}}}\\&={\frac {\left[{\sqrt {x^{2}+z^{2}}}/d\right]}{\sqrt {1+\left[{\sqrt {x^{2}+z^{2}}}/d\right]^{2}}}}\\&=\sin \left(\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\right)\\&=\sin \left(2\theta _{s}\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67ac03c67b3ddec5c0af587ffb39d8d8be976a8f)