|
|
Line 37: |
Line 37: |
| \begin{alignat}{2} | | \begin{alignat}{2} |
| q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ | | q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ |
− | & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ | + | & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ |
− | \frac{q}{k} & = \sqrt{ (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 } \\ | + | \frac{q}{k} |
− | & = \sqrt{ \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f /d }{\sqrt{1+(z \cos \theta_f /d)^2}} \right)^2 } \\ | + | & = \sqrt{ (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 } \\ |
− | & = \sqrt{ \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 } \\ | + | \frac{q^2}{k^2} |
| + | & = \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f /d }{\sqrt{1+(z \cos \theta_f /d)^2}} \right)^2 \\ |
| + | & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\ |
| + | & = \frac{x^2}{d^2+x^2} \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ |
| + | & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ |
| & = ? \\ | | & = ? \\ |
| & = ? \\ | | & = ? \\ |
Line 46: |
Line 50: |
| & = ? \\ | | & = ? \\ |
| & = ? \\ | | & = ? \\ |
− | & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\ | + | & = \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} \\ |
| + | \frac{q}{k} & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\ |
| & = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\ | | & = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\ |
| & = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\ | | & = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\ |
| & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ | | & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ |
− | & = \sin \left( 2 \theta_s \right) | + | q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right) |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 19:14, 29 December 2015
The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position
. The scattering angles are then:
![{\displaystyle {\begin{alignedat}{2}\theta _{f}&=\arctan \left[{\frac {x}{d}}\right]\\\alpha _{f}^{\prime }&=\arctan \left[{\frac {z}{d}}\right]\\\alpha _{f}&=\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/facc9ad57cd58f15e7403d40dc08f08815d3662b)
where
is the sample-detector distance,
is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and
is the in-plane component (rotation about z-axis). The alternate angle,
, is the elevation angle in the plane defined by
. Also note that the full scattering angle is:
![{\displaystyle {\begin{alignedat}{2}2\theta _{s}=\Theta &=\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\\&=\arctan \left[{\frac {\sqrt {(d\tan \theta _{f})^{2}+(d\tan \alpha _{f}^{\prime })^{2}}}{d}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+\tan ^{2}\alpha _{f}^{\prime }}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+{\frac {\tan ^{2}\alpha _{f}}{\cos ^{2}\theta _{f}}}}}\right]\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce190aa4f7dd836349234c33033cb245c49d4f20)
The momentum transfer components are:

later
As a check:
![{\displaystyle {\begin{alignedat}{2}q&={\sqrt {q_{x}^{2}+q_{y}^{2}+q_{z}^{2}}}\\&={\frac {2\pi }{\lambda }}{\sqrt {\sin ^{2}\theta _{f}\cos ^{2}\alpha _{f}+\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+\sin ^{2}\alpha _{f}}}\\{\frac {q}{k}}&={\sqrt {(\sin \theta _{f})^{2}(\cos \alpha _{f})^{2}+\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+(\sin \alpha _{f})^{2}}}\\{\frac {q^{2}}{k^{2}}}&=\left({\frac {x/d}{\sqrt {1+(x/d)^{2}}}}\right)^{2}\left(\cos \alpha _{f}\right)^{2}+\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+\left({\frac {z\cos \theta _{f}/d}{\sqrt {1+(z\cos \theta _{f}/d)^{2}}}}\right)^{2}\\&=\left({\frac {x}{\sqrt {d^{2}+x^{2}}}}\right)^{2}\left(\cos \alpha _{f}\right)^{2}+\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+\left({\frac {z\cos \theta _{f}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}\right)^{2}\\&={\frac {x^{2}}{d^{2}+x^{2}}}\left(\cos \alpha _{f}\right)^{2}+\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+{\frac {z^{2}\cos ^{2}\theta _{f}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}\\&={\frac {x^{2}}{d^{2}+x^{2}}}{\frac {d^{4}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}+\left(\cos \theta _{f}{\frac {d^{2}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}-1\right)^{2}+{\frac {z^{2}\cos ^{2}\theta _{f}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}\\&=?\\&=?\\&=?\\&=?\\&=?\\&={\frac {x^{2}+z^{2}}{d^{2}+x^{2}+z^{2}}}\\{\frac {q}{k}}&={\sqrt {\frac {x^{2}+z^{2}}{d^{2}+x^{2}+z^{2}}}}\\&={\frac {\sqrt {x^{2}+z^{2}}}{\sqrt {d^{2}+x^{2}+z^{2}}}}\\&={\frac {\left[{\sqrt {x^{2}+z^{2}}}/d\right]}{\sqrt {1+\left[{\sqrt {x^{2}+z^{2}}}/d\right]^{2}}}}\\&=\sin \left(\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\right)\\q&={\frac {2\pi }{\lambda }}\sin \left(2\theta _{s}\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/785c485d65c4c1d0db7f0a9bf38e80a83c264936)