Difference between revisions of "PrA"
KevinYager (talk | contribs) (Created page with "'''PrA''' is a simple ad-hoc parameter to define the "non-circularity" or [https://en.wikipedia.org/wiki/Ellipse eccentricity] of a 2D object. This quantity is simply: :<math>...") |
KevinYager (talk | contribs) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 25: | Line 25: | ||
\end{alignat} | \end{alignat} | ||
</math> | </math> | ||
− | And thus any non-circular object will have a larger PrA. | + | And thus any non-circular object will have a larger PrA. An infinitely eccentric object would have <math>\mathrm{PRA} \to \infty</math>. |
+ | ===Ellipse=== | ||
+ | If the object is an [https://en.wikipedia.org/wiki/Ellipse ellipse], with equation: | ||
+ | : <math>\frac{x^2}{a^2}+\frac{y^2}{b^2} = 1</math> | ||
+ | Then the width is <math>2a</math> and height <math>2b</math> (we assume <math>a \ge b</math>), the foci are <math>(\pm c, 0)</math> for <math display="inline">c = \sqrt{a^2-b^2}</math>. The eccentricity is: | ||
+ | : <math>e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}}</math> | ||
+ | A circle has <math>e=0</math>, while increasingly squashed ellipses have values of <math>e</math> closer and closer to <math>1</math>. The area of an ellipse is: | ||
+ | : <math>A = \pi a b</math> | ||
+ | The perimeter is not analytic but can be approximated very roughly by: | ||
+ | : <math>P \approx \pi (a +b)</math> | ||
+ | Which yields: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | \mathrm{PRA} & = \frac{Pr}{A} \\ | ||
+ | & = \frac{P \left( \sqrt{\frac{A}{\pi}} \right) }{A} \\ | ||
+ | & \approx \frac{\pi(a+b) }{\pi a b} \left( \sqrt{\frac{\pi a b}{\pi}} \right) \\ | ||
+ | & \approx \frac{(a+b) }{ a b} \sqrt{a b} \\ | ||
+ | & \approx \frac{(a+b) }{ \sqrt{a b} } \\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | One can establish a relationship between eccentricity and PrA by setting <math>b=1</math> and considering <math>a \in [1, \infty]</math>: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | \mathrm{PRA} & \approx \frac{(a+1) }{ \sqrt{a} } \\ | ||
+ | e & = \sqrt{1 - \frac{1}{a^2}} | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | In particular: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | \frac{(a+1) }{ \sqrt{a} } & = \mathrm{PRA} \\ | ||
+ | (a+1)^2 & = \mathrm{PRA}^2 a \\ | ||
+ | a^2+2a+1- \mathrm{PRA}^2 a & = 0 \\ | ||
+ | (1)a^2+(2-\mathrm{PRA}^2 )a+(1) & = 0 \\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | From the quadratic equation: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | a & = \frac{-(2-\mathrm{PRA}^2)\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4(1)(1)} }{2(1)} \\ | ||
+ | & = \frac{1}{2} \left( -2+\mathrm{PRA}^2\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4} \right)\\ | ||
+ | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4} \right)\\ | ||
+ | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{4 -4\mathrm{PRA}^2 + \mathrm{PRA}^4 - 4} \right)\\ | ||
+ | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{\mathrm{PRA}^4 - 4\mathrm{PRA}^2} \right)\\ | ||
+ | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | Since <math>a \to \infty</math> as <math>P \to \infty</math>, we select the positive branch. | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | a & = \frac{1}{2} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ | ||
+ | a^2 & = \frac{1}{4} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)^2\\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | And so: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | e & = \sqrt{1 - \frac{1}{a^2}} \\ | ||
+ | & = \sqrt{1 - \frac{4}{\left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)^2}} \\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | We can convert into a width:height ratio (<math>a/b</math>) as: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | \frac{a}{b} & = \sqrt{1 - e^2} \\ | ||
+ | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ | ||
+ | \end{alignat} | ||
+ | </math> |
Latest revision as of 10:55, 31 May 2022
PrA is a simple ad-hoc parameter to define the "non-circularity" or eccentricity of a 2D object. This quantity is simply:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathrm{PRA} = \frac{Pr}{A} \end{alignat} }
Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} is the object's perimeter, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is its surface area, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} is an effective size (radius), computed based on the corresponding circle of the same area:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} r = \sqrt{\frac{A}{\pi}} \end{alignat} }
This definition of PrA is convenient, since it provides a simple measure of eccentricity. In particular, for a circle one expects:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathrm{PRA} & = \frac{Pr}{A} \\ & = \frac{(2 \pi r)(r)}{\pi r^2} \\ & = 2 \end{alignat} }
Since a circle has the minimal perimeter (for a given area), this is a limiting value of PrA:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathrm{PRA} \geq 2 \end{alignat} }
And thus any non-circular object will have a larger PrA. An infinitely eccentric object would have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{PRA} \to \infty} .
Ellipse
If the object is an ellipse, with equation:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2} = 1}
Then the width is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2a} and height Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2b} (we assume Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \ge b} ), the foci are Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\pm c, 0)} for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle c = \sqrt{a^2-b^2}} . The eccentricity is:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}}}
A circle has Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e=0} , while increasingly squashed ellipses have values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} closer and closer to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} . The area of an ellipse is:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = \pi a b}
The perimeter is not analytic but can be approximated very roughly by:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P \approx \pi (a +b)}
Which yields:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathrm{PRA} & = \frac{Pr}{A} \\ & = \frac{P \left( \sqrt{\frac{A}{\pi}} \right) }{A} \\ & \approx \frac{\pi(a+b) }{\pi a b} \left( \sqrt{\frac{\pi a b}{\pi}} \right) \\ & \approx \frac{(a+b) }{ a b} \sqrt{a b} \\ & \approx \frac{(a+b) }{ \sqrt{a b} } \\ \end{alignat} }
One can establish a relationship between eccentricity and PrA by setting Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b=1} and considering Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \in [1, \infty]} :
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathrm{PRA} & \approx \frac{(a+1) }{ \sqrt{a} } \\ e & = \sqrt{1 - \frac{1}{a^2}} \end{alignat} }
In particular:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \frac{(a+1) }{ \sqrt{a} } & = \mathrm{PRA} \\ (a+1)^2 & = \mathrm{PRA}^2 a \\ a^2+2a+1- \mathrm{PRA}^2 a & = 0 \\ (1)a^2+(2-\mathrm{PRA}^2 )a+(1) & = 0 \\ \end{alignat} }
From the quadratic equation:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} a & = \frac{-(2-\mathrm{PRA}^2)\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4(1)(1)} }{2(1)} \\ & = \frac{1}{2} \left( -2+\mathrm{PRA}^2\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4} \right)\\ & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4} \right)\\ & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{4 -4\mathrm{PRA}^2 + \mathrm{PRA}^4 - 4} \right)\\ & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{\mathrm{PRA}^4 - 4\mathrm{PRA}^2} \right)\\ & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ \end{alignat} }
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \to \infty} as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P \to \infty} , we select the positive branch.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} a & = \frac{1}{2} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ a^2 & = \frac{1}{4} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)^2\\ \end{alignat} }
And so:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} e & = \sqrt{1 - \frac{1}{a^2}} \\ & = \sqrt{1 - \frac{4}{\left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)^2}} \\ \end{alignat} }
We can convert into a width:height ratio (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a/b} ) as:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \frac{a}{b} & = \sqrt{1 - e^2} \\ & = \frac{1}{2} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ \end{alignat} }