|
|
(One intermediate revision by the same user not shown) |
Line 65: |
Line 65: |
| \begin{alignat}{2} | | \begin{alignat}{2} |
| a & = \frac{-(2-\mathrm{PRA}^2)\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4(1)(1)} }{2(1)} \\ | | a & = \frac{-(2-\mathrm{PRA}^2)\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4(1)(1)} }{2(1)} \\ |
− | & = \frac{1}{2} \left( -2+\mathrm{PRA}^2\pm \sqrt{(2+\mathrm{PRA}^2)^2 - 4} \right)\\ | + | & = \frac{1}{2} \left( -2+\mathrm{PRA}^2\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4} \right)\\ |
− | & = \frac{1}{2} \left( \mathrm{PRA}^2\pm \sqrt{(2+\mathrm{PRA}^2)^2 - 4} -2 \right)\\ | + | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4} \right)\\ |
− | & = \frac{1}{2} \left( \mathrm{PRA}^2\pm \sqrt{(2+\mathrm{PRA}^2)^2 - 4} -2 \right)\\ | + | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{4 -4\mathrm{PRA}^2 + \mathrm{PRA}^4 - 4} \right)\\ |
| + | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{\mathrm{PRA}^4 - 4\mathrm{PRA}^2} \right)\\ |
| + | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
| Since <math>a \to \infty</math> as <math>P \to \infty</math>, we select the positive branch. | | Since <math>a \to \infty</math> as <math>P \to \infty</math>, we select the positive branch. |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | a & = \frac{1}{2} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ |
| + | a^2 & = \frac{1}{4} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)^2\\ |
| + | \end{alignat} |
| + | </math> |
| + | And so: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | e & = \sqrt{1 - \frac{1}{a^2}} \\ |
| + | & = \sqrt{1 - \frac{4}{\left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)^2}} \\ |
| + | \end{alignat} |
| + | </math> |
| + | We can convert into a width:height ratio (<math>a/b</math>) as: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \frac{a}{b} & = \sqrt{1 - e^2} \\ |
| + | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ |
| + | \end{alignat} |
| + | </math> |
Latest revision as of 10:55, 31 May 2022
PrA is a simple ad-hoc parameter to define the "non-circularity" or eccentricity of a 2D object. This quantity is simply:

Where
is the object's perimeter,
is its surface area, and
is an effective size (radius), computed based on the corresponding circle of the same area:

This definition of PrA is convenient, since it provides a simple measure of eccentricity. In particular, for a circle one expects:

Since a circle has the minimal perimeter (for a given area), this is a limiting value of PrA:

And thus any non-circular object will have a larger PrA. An infinitely eccentric object would have
.
Ellipse
If the object is an ellipse, with equation:

Then the width is
and height
(we assume
), the foci are
for
. The eccentricity is:

A circle has
, while increasingly squashed ellipses have values of
closer and closer to
. The area of an ellipse is:

The perimeter is not analytic but can be approximated very roughly by:

Which yields:

One can establish a relationship between eccentricity and PrA by setting
and considering
:

In particular:

From the quadratic equation:

Since
as
, we select the positive branch.

And so:

We can convert into a width:height ratio (
) as:
