Difference between revisions of "Science Agents"

From GISAXS
Jump to: navigation, search
(Biology)
((Pre) Generate Articles)
(4 intermediate revisions by the same user not shown)
Line 11: Line 11:
 
* 2019-07: [https://doi.org/10.1038/s41586-019-1335-8  Unsupervised word embeddings capture latent knowledge from materials science literature]
 
* 2019-07: [https://doi.org/10.1038/s41586-019-1335-8  Unsupervised word embeddings capture latent knowledge from materials science literature]
 
* 2024-11: [https://doi.org/10.1038/s41562-024-02046-9  Large language models surpass human experts in predicting neuroscience results]
 
* 2024-11: [https://doi.org/10.1038/s41562-024-02046-9  Large language models surpass human experts in predicting neuroscience results]
 +
 +
===(Pre) Generate Articles===
 +
* 2022-12: [https://aclanthology.org/2022.emnlp-main.296/ Re3: Generating Longer Stories With Recursive Reprompting and Revision]
 +
* 2023-03: English essays: [https://journal.unnes.ac.id/sju/index.php/elt/article/view/64069 Artificial intelligence (AI) technology in OpenAI ChatGPT application: A review of ChatGPT in writing English essay]
 +
* 2023-01: Journalism: [https://journals.sagepub.com/doi/10.1177/10776958221149577 Collaborating With ChatGPT: Considering the Implications of Generative Artificial Intelligence for Journalism and Media Education]
 +
* 2023-07: Science writing: [https://www.rbmojournal.com/article/S1472-6483(23)00219-5/fulltext Artificial intelligence in scientific writing: a friend or a foe?]
 +
* 2024-02: Wikipedia style: [https://arxiv.org/abs/2402.14207 Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models]
 +
* 2024-02: [https://arxiv.org/abs/2408.07055 LongWriter: Unleashing 10,000+ Word Generation from Long Context LLMs] ([https://github.com/THUDM/LongWriter code])
 +
* 2024-08: Scientific papers: [The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery]
 +
* 2024-09: PaperQA2: [https://paper.wikicrow.ai/ Language Models Achieve Superhuman Synthesis of Scientific Knowledge] ([https://x.com/SGRodriques/status/1833908643856818443 𝕏 post], [https://github.com/Future-House/paper-qa code])
 +
* 2025-03: [https://arxiv.org/abs/2503.18866 Reasoning to Learn from Latent Thoughts]
 +
* 2025-03: [https://arxiv.org/abs/2503.19065 WikiAutoGen: Towards Multi-Modal Wikipedia-Style Article Generation]
  
 
==Explanation==
 
==Explanation==
Line 135: Line 147:
 
* 2023-12: [https://doi.org/10.1038/s41586-023-06792-0 Autonomous chemical research with large language models] (Coscientist)
 
* 2023-12: [https://doi.org/10.1038/s41586-023-06792-0 Autonomous chemical research with large language models] (Coscientist)
 
* 2024-11: [https://www.nature.com/articles/s41467-024-54457-x An automatic end-to-end chemical synthesis development platform powered by large language models]
 
* 2024-11: [https://www.nature.com/articles/s41467-024-54457-x An automatic end-to-end chemical synthesis development platform powered by large language models]
 +
 +
==LLMs Optimized for Science==
 +
* 2022-11: [https://arxiv.org/abs/2211.09085 Galactica: A Large Language Model for Science]
 +
* 2025-03: [https://arxiv.org/abs/2503.17604 OmniScience: A Domain-Specialized LLM for Scientific Reasoning and Discovery]
 +
* 2025-03: Google [https://huggingface.co/collections/google/txgemma-release-67dd92e931c857d15e4d1e87 TxGemma] (2B, 9B, 27B): [https://developers.googleblog.com/en/introducing-txgemma-open-models-improving-therapeutics-development/ drug development]
  
 
=Impact of AI in Science=
 
=Impact of AI in Science=

Revision as of 14:05, 26 March 2025

AI Use-cases for Science

Literature

LLM extract data from papers

AI finding links in literature

(Pre) Generate Articles

Explanation

Autonomous Ideation

Adapting LLMs to Science

AI/ML Methods tailored to Science

Regression (Data Fitting)

Tabular Classification/Regression

Symbolic Regression

Literature Discovery

Commercial

AI/ML Methods in Science

Chemistry

Biology

Successes

AI/ML Methods co-opted for Science

Mechanistic Interpretability

Train large model on science data. Then apply mechanistic interpretability (e.g. sparse autoencoders, SAE) to the feature/activation space.

Uncertainty

Science Benchmarks

Science Agents

Reviews

Specific

Science Multi-Agent Setups

AI Science Systems

Inorganic Materials Discovery

Chemistry

LLMs Optimized for Science

Impact of AI in Science

Related Tools

Literature Search

Data Visualization

Generative

Chemistry

See Also