Difference between revisions of "Science Agents"

From GISAXS
Jump to: navigation, search
(AI Science Systems)
(Biology)
 
(10 intermediate revisions by the same user not shown)
Line 85: Line 85:
  
 
==AI/ML Methods in Science==
 
==AI/ML Methods in Science==
 +
* 2025-07: [https://www.mdpi.com/2313-433X/11/8/252 Synthetic Scientific Image Generation with VAE, GAN, and Diffusion Model Architectures]
 +
 
===Imaging===
 
===Imaging===
 
* 2025-05: [https://arxiv.org/abs/2505.08176 Behind the Noise: Conformal Quantile Regression Reveals Emergent Representations] (blog: [https://phzwart.github.io/behindthenoise/ Behind the Noise])
 
* 2025-05: [https://arxiv.org/abs/2505.08176 Behind the Noise: Conformal Quantile Regression Reveals Emergent Representations] (blog: [https://phzwart.github.io/behindthenoise/ Behind the Noise])
  
 
===Materials===
 
===Materials===
 +
* 2024-12: [https://www.nature.com/articles/s41467-024-54639-7 Crystal structure generation with autoregressive large language modeling
 
* 2025-03: [https://arxiv.org/abs/2503.03965 All-atom Diffusion Transformers: Unified generative modelling of molecules and materials]
 
* 2025-03: [https://arxiv.org/abs/2503.03965 All-atom Diffusion Transformers: Unified generative modelling of molecules and materials]
  
Line 96: Line 99:
 
* 2025-02: [https://www.nature.com/articles/s42256-025-00994-z Large language models for scientific discovery in molecular property prediction]
 
* 2025-02: [https://www.nature.com/articles/s42256-025-00994-z Large language models for scientific discovery in molecular property prediction]
 
* [https://x.com/vant_ai/status/1903070297991110657 2025-03]: [https://www.vant.ai/ Vant AI] [https://www.vant.ai/neo-1 Neo-1]: atomistic foundation model (small molecules, proteins, etc.)
 
* [https://x.com/vant_ai/status/1903070297991110657 2025-03]: [https://www.vant.ai/ Vant AI] [https://www.vant.ai/neo-1 Neo-1]: atomistic foundation model (small molecules, proteins, etc.)
 +
* 2025-04: [https://arxiv.org/abs/2504.08051 Compositional Flows for 3D Molecule and Synthesis Pathway Co-design]
 +
* 2025-07: [https://arxiv.org/abs/2507.07456 General purpose models for the chemical sciences]
  
 
===Biology===
 
===Biology===
Line 111: Line 116:
 
* [https://x.com/vant_ai/status/1903070297991110657 2025-03]: [https://www.vant.ai/ Vant AI] [https://www.vant.ai/neo-1 Neo-1]: atomistic foundation model (small molecules, proteins, etc.)
 
* [https://x.com/vant_ai/status/1903070297991110657 2025-03]: [https://www.vant.ai/ Vant AI] [https://www.vant.ai/neo-1 Neo-1]: atomistic foundation model (small molecules, proteins, etc.)
 
* 2025-03: [https://arxiv.org/abs/2503.16351 Lyra: An Efficient and Expressive Subquadratic Architecture for Modeling Biological Sequences]
 
* 2025-03: [https://arxiv.org/abs/2503.16351 Lyra: An Efficient and Expressive Subquadratic Architecture for Modeling Biological Sequences]
 +
* 2025-08: RosettaFold 3: [https://www.biorxiv.org/content/10.1101/2025.08.14.670328v2 Accelerating Biomolecular Modeling with AtomWorks and RF3]
  
 
===Medicine===
 
===Medicine===
Line 166: Line 172:
 
* See also: [[AI_Agents#Deep_Research|AI Agents > Deep Research]]
 
* See also: [[AI_Agents#Deep_Research|AI Agents > Deep Research]]
 
* 2025-04-08: Sakana: [https://pub.sakana.ai/ai-scientist-v2/paper/paper.pdf The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search] ([https://github.com/SakanaAI/AI-Scientist-v2 code])
 
* 2025-04-08: Sakana: [https://pub.sakana.ai/ai-scientist-v2/paper/paper.pdf The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search] ([https://github.com/SakanaAI/AI-Scientist-v2 code])
 +
* 2025-07: [https://arxiv.org/abs/2507.14267 DREAMS: Density Functional Theory Based Research Engine for Agentic Materials Simulation]
  
 
==Science Multi-Agent Setups==
 
==Science Multi-Agent Setups==
Line 177: Line 184:
 
* 2025-06: [https://zenodo.org/records/15693353 The Discovery Engine]
 
* 2025-06: [https://zenodo.org/records/15693353 The Discovery Engine]
 
** 2025-07: [https://arxiv.org/abs/2507.00964 Benchmarking the Discovery Engine] ([https://www.leap-labs.com/blog/how-we-replicated-five-peer-reviewed-papers-in-five-hours blog])
 
** 2025-07: [https://arxiv.org/abs/2507.00964 Benchmarking the Discovery Engine] ([https://www.leap-labs.com/blog/how-we-replicated-five-peer-reviewed-papers-in-five-hours blog])
 +
* 2025-07: [https://www.preprints.org/manuscript/202507.1951/v1 Autonomous Scientific Discovery Through Hierarchical AI Scientist Systems]
  
 
===Inorganic Materials Discovery===
 
===Inorganic Materials Discovery===
Line 186: Line 194:
 
* 2025-04: [https://arxiv.org/abs/2504.14110 System of Agentic AI for the Discovery of Metal-Organic Frameworks]
 
* 2025-04: [https://arxiv.org/abs/2504.14110 System of Agentic AI for the Discovery of Metal-Organic Frameworks]
 
* 2025-05: [https://arxiv.org/abs/2505.08762 The Open Molecules 2025 (OMol25) Dataset, Evaluations, and Models]
 
* 2025-05: [https://arxiv.org/abs/2505.08762 The Open Molecules 2025 (OMol25) Dataset, Evaluations, and Models]
 +
 +
===Materials Characterization===
 +
* 2025-08: [https://arxiv.org/abs/2508.06569 Operationalizing Serendipity: Multi-Agent AI Workflows for Enhanced Materials Characterization with Theory-in-the-Loop]
  
 
===Chemistry===
 
===Chemistry===
Line 192: Line 203:
 
* 2025-06: [https://paper.ether0.ai/ Training a Scientific Reasoning Model for Chemistry]
 
* 2025-06: [https://paper.ether0.ai/ Training a Scientific Reasoning Model for Chemistry]
 
* 2025-06: [https://arxiv.org/abs/2506.06363 ChemGraph: An Agentic Framework for Computational Chemistry Workflows] ([https://github.com/argonne-lcf/ChemGraph code])
 
* 2025-06: [https://arxiv.org/abs/2506.06363 ChemGraph: An Agentic Framework for Computational Chemistry Workflows] ([https://github.com/argonne-lcf/ChemGraph code])
 +
 +
===Bio===
 +
* 2025-07: [https://arxiv.org/abs/2507.01485 BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments]
  
 
==LLMs Optimized for Science==
 
==LLMs Optimized for Science==
 
* 2022-11: [https://arxiv.org/abs/2211.09085 Galactica: A Large Language Model for Science]
 
* 2022-11: [https://arxiv.org/abs/2211.09085 Galactica: A Large Language Model for Science]
 +
* 2024-12: [https://www.nature.com/articles/s41467-024-54639-7 Crystal structure generation with autoregressive large language modeling
 
* 2025-02: [https://arxiv.org/abs/2502.13107 MatterChat: A Multi-Modal LLM for Material Science]
 
* 2025-02: [https://arxiv.org/abs/2502.13107 MatterChat: A Multi-Modal LLM for Material Science]
 
* 2025-03: [https://arxiv.org/abs/2503.17604 OmniScience: A Domain-Specialized LLM for Scientific Reasoning and Discovery]
 
* 2025-03: [https://arxiv.org/abs/2503.17604 OmniScience: A Domain-Specialized LLM for Scientific Reasoning and Discovery]
Line 221: Line 236:
 
=Science Datasets=
 
=Science Datasets=
 
* [https://github.com/blaiszik/awesome-matchem-datasets/ Awesome Materials & Chemistry Datasets]
 
* [https://github.com/blaiszik/awesome-matchem-datasets/ Awesome Materials & Chemistry Datasets]
 +
* NIST [https://jarvis.nist.gov/ Jarvis] (simulations)
  
 
=See Also=
 
=See Also=
 
* [[AI agents]]
 
* [[AI agents]]
 
* [https://nanobot.chat/ Nanobot.chat]: Intelligent AI for the labnetwork @ mtl.mit.edu forum
 
* [https://nanobot.chat/ Nanobot.chat]: Intelligent AI for the labnetwork @ mtl.mit.edu forum

Latest revision as of 10:12, 15 August 2025

AI Use-cases for Science

Literature

LLM extract data from papers

AI finding links in literature

(Pre) Generate Articles

Explanation

Autonomous Ideation

Adapting LLMs to Science

AI/LLM Control of Scientific Instruments/Facilities

AI/ML Methods tailored to Science

Regression (Data Fitting)

Tabular Classification/Regression

Symbolic Regression

Literature Discovery

Commercial

Bio

AI/ML Methods in Science

Imaging

Materials

Chemistry

Biology

Medicine

See: AI_Agents#Medicine

Successes

AI/ML Methods co-opted for Science

Mechanistic Interpretability

Train large model on science data. Then apply mechanistic interpretability (e.g. sparse autoencoders, SAE) to the feature/activation space.

Uncertainty

Science Benchmarks

Science Agents

Reviews

Specific

Science Multi-Agent Setups

AI Science Systems

Inorganic Materials Discovery

Materials Characterization

Chemistry

Bio

LLMs Optimized for Science

Impact of AI in Science

Related Tools

Literature Search

Data Visualization

Generative

Chemistry

Science Datasets

See Also