Difference between revisions of "Talk:Polarization correction"
KevinYager (talk | contribs) |
KevinYager (talk | contribs) |
||
| (4 intermediate revisions by the same user not shown) | |||
| Line 42: | Line 42: | ||
| <math>z</math> | | <math>z</math> | ||
| <math>R = \sqrt{x^2 + y^2 + z^2}</math> | | <math>R = \sqrt{x^2 + y^2 + z^2}</math> | ||
| − | | <math>\sin \delta = \frac{ | + | | <math>\sin \delta = \frac{z}{R}</math> |
| <math>\cos \delta = \frac{h}{R}</math> | | <math>\cos \delta = \frac{h}{R}</math> | ||
| − | | <math>\tan \delta = \frac{ | + | | <math>\tan \delta = \frac{z}{h}</math> |
|} | |} | ||
| + | |||
| + | |||
| + | So: | ||
| + | :<math> | ||
| + | \begin{alignat}{2} | ||
| + | \tan \gamma & = \frac{x}{y} \\ | ||
| + | & = \frac{r \sin \chi}{r / \tan 2 \theta} \\ | ||
| + | & = \tan 2 \theta \sin \chi \\ | ||
| + | \gamma & = \tan^{-1} \left [ \tan 2 \theta \sin \chi \right ] | ||
| + | |||
| + | \end{alignat} | ||
| + | </math> | ||
| + | and: | ||
| + | :<math> | ||
| + | \begin{alignat}{2} | ||
| + | \sin \delta & = \frac{z}{R} \\ | ||
| + | & = \frac{r \cos \chi}{r / \sin 2 \theta} \\ | ||
| + | & = \sin 2 \theta \cos \chi \\ | ||
| + | \delta & = \sin^{-1} \left [ \sin 2 \theta \cos \chi \right ] | ||
| + | |||
| + | \end{alignat} | ||
| + | </math> | ||
| + | |||
| + | and so: | ||
| + | :<math> | ||
| + | \begin{alignat}{2} | ||
| + | P_h & = 1 - \cos^2 \delta \sin^2 \gamma \\ | ||
| + | & = 1 - \left( 1 - \left[ \sin 2 \theta \cos \chi \right]^2 \right ) \frac{ \left [ \tan 2 \theta \sin \chi \right ]^2 }{ \left [ \tan 2 \theta \sin \chi \right ]^2 + 1 } \\ | ||
| + | & = 1 - \sin^2(2 \theta) \sin^2(\chi) | ||
| + | \end{alignat} | ||
| + | </math> | ||
Latest revision as of 20:58, 22 November 2019
| Angle | Adjacent | Opposite | Hypotenuse | Sine = O/H | Cosine = A/H | Tangent = O/A | |
|---|---|---|---|---|---|---|---|
| Azimuth on detector (relative to axis) |
|||||||
| Full scattering angle (between incident beam and scattering) |
|||||||
| In-plane angle | |||||||
| Elevation angle |
So:
and:
and so: