Difference between revisions of "AI tools"

From GISAXS
Jump to: navigation, search
(Reasoning)
(Reasoning)
 
(10 intermediate revisions by the same user not shown)
Line 27: Line 27:
 
* 2025-01Jan-02: [https://huggingface.co/PowerInfer/SmallThinker-3B-Preview SmallThinker-3B-Preview] (fine-tune of [https://huggingface.co/Qwen/Qwen2.5-3B-Instruct Qwen2.5-3b-Instruct])
 
* 2025-01Jan-02: [https://huggingface.co/PowerInfer/SmallThinker-3B-Preview SmallThinker-3B-Preview] (fine-tune of [https://huggingface.co/Qwen/Qwen2.5-3B-Instruct Qwen2.5-3b-Instruct])
 
* [https://x.com/SebastienBubeck/status/1877010995727470877 2025-01Jan-08]: Microsoft [https://huggingface.co/microsoft/phi-4 phi-4] 15B
 
* [https://x.com/SebastienBubeck/status/1877010995727470877 2025-01Jan-08]: Microsoft [https://huggingface.co/microsoft/phi-4 phi-4] 15B
 +
* [https://x.com/MiniMax__AI/status/1879226391352549451 2025-01Jan-14]: [https://www.minimaxi.com/en/news/minimax-01-series-2 MiniMax-01], MiniMax-Text-01 and MiniMax-VL-01; 4M context length ([https://www.minimaxi.com/en/news/minimax-01-series-2 paper])
  
 
===For Coding===
 
===For Coding===
Line 41: Line 42:
 
* 2024-12Dec-24: Qwen [https://huggingface.co/Qwen/QVQ-72B-Preview QvQ-72B-preview] (visual reasoning)
 
* 2024-12Dec-24: Qwen [https://huggingface.co/Qwen/QVQ-72B-Preview QvQ-72B-preview] (visual reasoning)
 
* 2025-01Jan-10: [https://mbzuai-oryx.github.io/LlamaV-o1/ LlamaV-o1: Rethinking Step-by-step Visual Reasoning in LLMs] ([https://arxiv.org/abs/2501.06186 preprint], [https://github.com/mbzuai-oryx/LlamaV-o1 code], [https://huggingface.co/omkarthawakar/LlamaV-o1 weights])
 
* 2025-01Jan-10: [https://mbzuai-oryx.github.io/LlamaV-o1/ LlamaV-o1: Rethinking Step-by-step Visual Reasoning in LLMs] ([https://arxiv.org/abs/2501.06186 preprint], [https://github.com/mbzuai-oryx/LlamaV-o1 code], [https://huggingface.co/omkarthawakar/LlamaV-o1 weights])
 +
* [https://x.com/deepseek_ai/status/1881318130334814301 2025-01Jan-20]: [https://huggingface.co/deepseek-ai/DeepSeek-R1 DeepSeek-R1], [https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B DeepSeek-R1-Distill-Llama-70B], DeepSeek-R1-Distill-Qwen-32B, ... ([https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf paper])
  
 
==Cloud LLM==
 
==Cloud LLM==
Line 56: Line 58:
 
* 2024-09: [https://arxiv.org/abs/2409.14924 Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely]
 
* 2024-09: [https://arxiv.org/abs/2409.14924 Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely]
 
* 2024-12: [https://arxiv.org/abs/2412.17558 A Survey of Query Optimization in Large Language Models]
 
* 2024-12: [https://arxiv.org/abs/2412.17558 A Survey of Query Optimization in Large Language Models]
 +
* 2025-01: [https://arxiv.org/abs/2501.07391 Enhancing Retrieval-Augmented Generation: A Study of Best Practices]
 
* List of [https://github.com/NirDiamant/RAG_Techniques RAG techniques]
 
* List of [https://github.com/NirDiamant/RAG_Techniques RAG techniques]
 
* [https://github.com/athina-ai/rag-cookbooks Advanced RAG Cookbooks👨🏻‍💻]
 
* [https://github.com/athina-ai/rag-cookbooks Advanced RAG Cookbooks👨🏻‍💻]
Line 77: Line 80:
 
* 2024-11: [https://arxiv.org/abs/2411.19443 Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models]
 
* 2024-11: [https://arxiv.org/abs/2411.19443 Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models]
 
* 2025-01: [https://arxiv.org/abs/2501.05366 Search-o1: Agentic Search-Enhanced Large Reasoning Models] ([https://search-o1.github.io/ project], [https://github.com/sunnynexus/Search-o1 code])
 
* 2025-01: [https://arxiv.org/abs/2501.05366 Search-o1: Agentic Search-Enhanced Large Reasoning Models] ([https://search-o1.github.io/ project], [https://github.com/sunnynexus/Search-o1 code])
 +
* 2025-01: [https://github.com/Marker-Inc-Korea/AutoRAG AutoRAG: RAG AutoML tool for automatically finding an optimal RAG pipeline for your data]
 +
* 2025-01: [https://arxiv.org/abs/2501.05874 VideoRAG: Retrieval-Augmented Generation over Video Corpus]
  
 
===Open-source Implementations===
 
===Open-source Implementations===
Line 109: Line 114:
 
* [https://github.com/DS4SD/docling Docling]: converts multiple formats (PDF, DOCX, PPTX, Images, HTML) into Markdown and JSON
 
* [https://github.com/DS4SD/docling Docling]: converts multiple formats (PDF, DOCX, PPTX, Images, HTML) into Markdown and JSON
 
* [https://github.com/microsoft/markitdown Microsoft Markitdown]: converts various formats (PDF, Word, Excel, PPT) to Markdown (available via [https://msftmd.replit.app/ web interface on replit])
 
* [https://github.com/microsoft/markitdown Microsoft Markitdown]: converts various formats (PDF, Word, Excel, PPT) to Markdown (available via [https://msftmd.replit.app/ web interface on replit])
 +
* [https://github.com/wisupai/e2m e2m: Everything to Markdown] (doc, docx, epub, html, htm, url, pdf, ppt, pptx, mp3, and m4a)
 +
* Nvidia [https://docs.nvidia.com/nv-ingest/user-guide/index.html NV-ingest] ([https://github.com/NVIDIA/nv-ingest code]) scalable, performance-oriented document content and metadata extraction microservice
 +
* [https://github.com/QuivrHQ/MegaParse MegaParse]: Your Parser for every type of documents (pdf, powerpoint, word)
 +
 
====PDF Conversion====
 
====PDF Conversion====
 
* [https://github.com/kermitt2/grobid Grobid]
 
* [https://github.com/kermitt2/grobid Grobid]
Line 227: Line 236:
 
* [https://cartesia.ai/ Cartesia] [https://cartesia.ai/sonic Sonic]
 
* [https://cartesia.ai/ Cartesia] [https://cartesia.ai/sonic Sonic]
 
* [https://neets.ai/ Neets AI] ($1/million characters)
 
* [https://neets.ai/ Neets AI] ($1/million characters)
 +
* Hailuo AI T2A-01-HD ([https://www.hailuo.ai/audio try], [https://intl.minimaxi.com/document/platform%20introduction?key=66701c8e1d57f38758d58198 API])
  
 
=Text-to-audio=
 
=Text-to-audio=
Line 302: Line 312:
 
* [https://github.com/unclecode/crawl4ai Crawl4AI: Crawl Smarter, Faster, Freely. For AI.]
 
* [https://github.com/unclecode/crawl4ai Crawl4AI: Crawl Smarter, Faster, Freely. For AI.]
 
* [https://github.com/ScrapeGraphAI/Scrapegraph-ai ScrapeGraphAI: You Only Scrape Once]: web scraping python library that uses LLM and direct graph logic to create scraping pipelines for websites and local documents (XML, HTML, JSON, Markdown, etc.)
 
* [https://github.com/ScrapeGraphAI/Scrapegraph-ai ScrapeGraphAI: You Only Scrape Once]: web scraping python library that uses LLM and direct graph logic to create scraping pipelines for websites and local documents (XML, HTML, JSON, Markdown, etc.)
 +
===Headless Browser (scrape & automate)===
 +
* [https://github.com/lightpanda-io/browser Lightpanda Browser]
 +
 
===Github===
 
===Github===
 
* [https://github.com/cyclotruc/gitingest GitIngest]: Turn any GitHub repository into a prompt-friendly text file, for inclusion in LLM's context. Available at: [https://gitingest.com/ gitingest.com]
 
* [https://github.com/cyclotruc/gitingest GitIngest]: Turn any GitHub repository into a prompt-friendly text file, for inclusion in LLM's context. Available at: [https://gitingest.com/ gitingest.com]

Latest revision as of 10:34, 20 January 2025

LLM

Open-weights LLM

For Coding

Rankings: bigcode-models-leaderboard and CodeElo leaderboard

Reasoning

Cloud LLM

Multi-modal: Audio

Triage

Retrieval Augmented Generation (RAG)

Reviews

Measuring RAG performance

Analysis of RAG overall

Approaches

Open-source Implementations

Web-based Tools

  • SciSpace Chat with PDF (also available as a GPT).

Commercial Cloud Offerings

Document Parsing

PDF Conversion

Automatic Optimization

Analogous to Gradient Descent

LLM for scoring/ranking

LLM Agents

Interfaces

Chatbot Frontend

Web (code)

Web (product)

Desktop GUI

Alternative Text Chatbot UI

  • Loom provides a sort of tree-like structure for LLM coming up with branched writings.
  • The Pantheon Interface is a new idea for how to interact with LLMs (live instance, code). In a traditional interaction, you prompt the bot and it replies in a turn-by-turn manner. Pantheon instead invites you to type out your thoughts, and various agents will asynchronously add comments or questions to spur along your brainstorming.

Conversational Audio Chatbot

Related Research

Commercial Systems

Speech Recognition (ASR) and Transcription

Lists

Open Source

In Browser

  • Whisper Timestamped: Multilingual speech recognition with word-level timestamps, running locally in browser

Phrase Endpointing and Voice Activity Detection (VAD)

I.e. how to determine when user is done talking, and bot should respond?

Audio Cleanup

  • Krisp AI: Noise cancellation, meeting summary, etc.

Text-to-speech (TTS)

Open Source

Cloud

Text-to-audio

Vision

Visual Models

Multi-modal Models (language-vision/video)

Optical character recognition (OCR)

Embedding

Time Series

Control

Forecasting

Data

Vector Database

Open Source

Commercial cloud

MySQL

Database with Search

Web Scraping

Headless Browser (scrape & automate)

Github

See Also