Difference between revisions of "Quantum Mechanics"
KevinYager (talk | contribs) (→Superposition) |
KevinYager (talk | contribs) (→Superposition) |
||
| Line 58: | Line 58: | ||
</math> | </math> | ||
Notice that the final terms represent 'interference' between the two constituent states. This interference has no classical analogue; it is a quantum effect. Thus a superposition is not merely a 'joining' of the two states (e.g. "the particle can be in state 1 or state 2"), but a truly coherent interference between the two states. The superposition may be more generally written as: | Notice that the final terms represent 'interference' between the two constituent states. This interference has no classical analogue; it is a quantum effect. Thus a superposition is not merely a 'joining' of the two states (e.g. "the particle can be in state 1 or state 2"), but a truly coherent interference between the two states. The superposition may be more generally written as: | ||
| + | |||
| + | {| class="wikitable" | ||
| + | |- | ||
| + | ! Integral Notation | ||
| + | ! Dirac Notation | ||
| + | |- | ||
| + | | <math>\int | \psi(x) |^2 \mathrm{d}x = 1</math> | ||
| + | | <math> \langle \psi | \psi \rangle = 1</math> | ||
| + | |} | ||
| + | |||
| + | The distribution of the particle described by <math>\psi(x)</math> is given by: | ||
| + | {| class="wikitable" | ||
| + | |- | ||
| + | ! Integral Notation | ||
| + | ! Dirac Notation | ||
| + | |- | ||
| + | | <math> \psi(x) = \sum_n c_n \psi_n </math> | ||
| + | | <math> |\psi\rangle = c_1 | 1 \rangle + c_2 | 2 \rangle + c_3 | 3 \rangle + \cdots </math> | ||
| + | |} | ||
==See Also== | ==See Also== | ||
* [http://en.wikipedia.org/wiki/Quantum_mechanics Wikipedia: Quantum Mechanics] | * [http://en.wikipedia.org/wiki/Quantum_mechanics Wikipedia: Quantum Mechanics] | ||
Revision as of 19:16, 12 October 2014
Quantum mechanics is a theory that describes the interactions of all particles and systems. It underlies all physical phenomena, including scattering.
Contents
Wavefunction
A quantum system is completely specified by its Wave Function:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) }
The wavefunction is typically normalized:
| Integral Notation | Dirac Notation |
|---|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int | \psi(x) |^2 \mathrm{d}x = 1} |
The distribution of the particle described by is given by:
| Integral Notation | Dirac Notation |
|---|---|
In the Copenhagen Interpretation, is the probability of finding the particle at location . In Universal Wave Function interpretations (e.g. MWI), can be thought of as the spatial distribution of the particle. The wavefunction contains all the information one can know about a system. It can thus be thought of as 'being' the particle/system in question. However, the wavefunction can be described in an infinite number of different ways. That is, there is not a unique basis for describing the wavefunction. So, for instance, one can describe the wavefunction using position-space or momentum-space:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) \longleftrightarrow \tilde{\psi} (k) }
These representations can be inter-related (c.f. Fourier transform):
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\psi}(k) = \frac{1}{\sqrt{2 \pi}} \int {\psi}(x) e^{-i k x } \mathrm{d}x }
Wave packet
TBD
Heisenberg Indeterminacy Relations
(Also known as Heisenberg Uncertainty Principle.)
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_{x}\Delta_{p} \geq \frac{\hbar}{2}}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_{E}\Delta_{t} \geq \frac{\hbar}{2}}
Superposition
If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2(x)} are both allowed states for a given system, then the following state is also allowed:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) = \alpha \psi_1(x) + \beta \psi_2(x) }
This leads to a notable consequence:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \Pr(x) & = | \alpha \psi_1(x) + \beta \psi_2(x) |^2 \\ & = (\alpha\psi_1 + \beta\psi_2)(\alpha\psi_1 + \beta\psi_2)^{*} \\ & = |\alpha|^2 |\psi_1|^2 + |\beta|^2\psi_2^2 + \alpha\beta^* \psi_1\psi_2^* + \alpha^*\beta\psi_1^*\psi_2 \\ & = \mathrm{Pr}_1(x) + \mathrm{Pr}_2(x) + \mathrm{interference} \\ \end{alignat} }
Notice that the final terms represent 'interference' between the two constituent states. This interference has no classical analogue; it is a quantum effect. Thus a superposition is not merely a 'joining' of the two states (e.g. "the particle can be in state 1 or state 2"), but a truly coherent interference between the two states. The superposition may be more generally written as:
| Integral Notation | Dirac Notation |
|---|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int | \psi(x) |^2 \mathrm{d}x = 1} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \psi | \psi \rangle = 1} |
The distribution of the particle described by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x)} is given by:
| Integral Notation | Dirac Notation |
|---|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) = \sum_n c_n \psi_n } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle = c_1 | 1 \rangle + c_2 | 2 \rangle + c_3 | 3 \rangle + \cdots } |