Difference between revisions of "Quantum Mechanics"

From GISAXS
Jump to: navigation, search
(State)
(Superposition)
Line 94: Line 94:
 
| &nbsp;<math> \psi(x) = \sum_n c_n \psi_n </math>&nbsp;
 
| &nbsp;<math> \psi(x) = \sum_n c_n \psi_n </math>&nbsp;
 
| &nbsp;<math> |\psi\rangle = c_1 | 1 \rangle + c_2 | 2 \rangle + c_3 | 3 \rangle + \cdots </math>&nbsp;
 
| &nbsp;<math> |\psi\rangle = c_1 | 1 \rangle + c_2 | 2 \rangle + c_3 | 3 \rangle + \cdots </math>&nbsp;
 +
|}
 +
 +
==Measurement==
 +
The 'probability' for the wavefunction <math>\psi</math> to collapse into state <math>\phi</math> is:
 +
{| class="wikitable"
 +
|-
 +
! Integral Notation
 +
! Dirac Notation
 +
|-
 +
| &nbsp;<math> \int \phi^* \psi \mathrm{d}x </math>&nbsp;
 +
| &nbsp;<math> \langle \phi | \psi \rangle = a_1^*c_1 + a_2^*c_2 + a_3^*c_3 + \cdots </math>&nbsp;
 
|}
 
|}
  
 
==See Also==
 
==See Also==
 
* [http://en.wikipedia.org/wiki/Quantum_mechanics Wikipedia: Quantum Mechanics]
 
* [http://en.wikipedia.org/wiki/Quantum_mechanics Wikipedia: Quantum Mechanics]

Revision as of 19:27, 12 October 2014

Quantum mechanics is a theory that describes the interactions of all particles and systems. It underlies all physical phenomena, including scattering.


Wavefunction

A quantum system is completely specified by its Wave Function:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) }

The wavefunction is typically normalized:

Integral Notation Dirac Notation
 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int | \psi(x) |^2 \mathrm{d}x = 1}    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \psi | \psi \rangle = 1}  

The distribution of the particle described by is given by:

Integral Notation Dirac Notation
     

In the Copenhagen Interpretation, is the probability of finding the particle at location Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . In Universal Wave Function interpretations (e.g. MWI), Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pr(x)} can be thought of as the spatial distribution of the particle. The wavefunction contains all the information one can know about a system. It can thus be thought of as 'being' the particle/system in question. However, the wavefunction can be described in an infinite number of different ways. That is, there is not a unique basis for describing the wavefunction. So, for instance, one can describe the wavefunction using position-space or momentum-space:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) \longleftrightarrow \tilde{\psi} (k) }

These representations can be inter-related (c.f. Fourier transform):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) = \frac{1}{\sqrt{2 \pi}} \int \tilde{\psi}(k) e^{i k x } \mathrm{d}k }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\psi}(k) = \frac{1}{\sqrt{2 \pi}} \int {\psi}(x) e^{-i k x } \mathrm{d}x }

State

Note that the wavefunction describes the state of the system; there are various choices of basis one can use as an expansion.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi = \sum_n c_n \psi_n }

This can also be viewed as a vector in the Hilbert space. The Dirac notation (bra-ket notation) is useful in this regard. A particular state is a (column) vector:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle | \psi \rangle = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} }

Which is a 'ket'. We define a 'bra' (the 'final state') as a (row) vector:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \psi | = \begin{bmatrix} c_1^* & c_2^* & \dots & c_n^* \end{bmatrix} }

And note that the 'bra' is the conjuagte transpose of the 'ket':

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \psi | ^{\dagger} = | \psi \rangle }

Wave packet

TBD

Heisenberg Indeterminacy Relations

(Also known as Heisenberg Uncertainty Principle.)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_{x}\Delta_{p} \geq \frac{\hbar}{2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_{E}\Delta_{t} \geq \frac{\hbar}{2}}

Superposition

If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2(x)} are both allowed states for a given system, then the following state is also allowed:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) = \alpha \psi_1(x) + \beta \psi_2(x) }

This leads to a notable consequence:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \Pr(x) & = | \alpha \psi_1(x) + \beta \psi_2(x) |^2 \\ & = (\alpha\psi_1 + \beta\psi_2)(\alpha\psi_1 + \beta\psi_2)^{*} \\ & = |\alpha|^2 |\psi_1|^2 + |\beta|^2\psi_2^2 + \alpha\beta^* \psi_1\psi_2^* + \alpha^*\beta\psi_1^*\psi_2 \\ & = \mathrm{Pr}_1(x) + \mathrm{Pr}_2(x) + \mathrm{interference} \\ \end{alignat} }

Notice that the final terms represent 'interference' between the two constituent states. This interference has no classical analogue; it is a quantum effect. Thus a superposition is not merely a 'joining' of the two states (e.g. "the particle can be in state 1 or state 2"), but a truly coherent interference between the two states. The superposition may be more generally written as:

Integral Notation Dirac Notation
 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int | \psi(x) |^2 \mathrm{d}x = 1}    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \psi | \psi \rangle = 1}  

The distribution of the particle described by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x)} is given by:

Integral Notation Dirac Notation
 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) = \sum_n c_n \psi_n }    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle = c_1 | 1 \rangle + c_2 | 2 \rangle + c_3 | 3 \rangle + \cdots }  

Measurement

The 'probability' for the wavefunction Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi} to collapse into state Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} is:

Integral Notation Dirac Notation
 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \phi^* \psi \mathrm{d}x }    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \phi | \psi \rangle = a_1^*c_1 + a_2^*c_2 + a_3^*c_3 + \cdots }  

See Also