Difference between revisions of "Absorption length"
KevinYager (talk | contribs) (→Related forms) |
KevinYager (talk | contribs) (→Related forms) |
||
| Line 43: | Line 43: | ||
| <math>\epsilon = \frac{m_a}{\rho N_a 2 r_e \lambda f_2 }</math> | | <math>\epsilon = \frac{m_a}{\rho N_a 2 r_e \lambda f_2 }</math> | ||
| <math>\epsilon = \frac{m_a}{\rho N_a \sigma}</math> | | <math>\epsilon = \frac{m_a}{\rho N_a \sigma}</math> | ||
| − | | | + | | <math>\epsilon = \frac{ \lambda m_a }{4 \pi M_a \beta}</math> |
| <math>\epsilon = \frac{m_a }{2 M_a \lambda \mathrm{Im}(\mathrm{SLD})} </math> | | <math>\epsilon = \frac{m_a }{2 M_a \lambda \mathrm{Im}(\mathrm{SLD})} </math> | ||
|- | |- | ||
| Line 51: | Line 51: | ||
| <math>\mu = \frac{\rho N_a}{m_a} 2 r_e \lambda f_2</math> | | <math>\mu = \frac{\rho N_a}{m_a} 2 r_e \lambda f_2</math> | ||
| <math>\mu = \frac{\rho N_a}{m_a} \sigma</math> | | <math>\mu = \frac{\rho N_a}{m_a} \sigma</math> | ||
| − | | | + | | <math>\mu = \frac{4 \pi M_a}{ \lambda m_a } \beta</math> |
| <math>\mu = \frac{2 M_a \lambda}{m_a } \mathrm{Im}(\mathrm{SLD})</math> | | <math>\mu = \frac{2 M_a \lambda}{m_a } \mathrm{Im}(\mathrm{SLD})</math> | ||
|- | |- | ||
| Line 59: | Line 59: | ||
| <math>\frac{\mu}{\rho} = \frac{N_a}{m_a} 2 r_e \lambda f_2</math> | | <math>\frac{\mu}{\rho} = \frac{N_a}{m_a} 2 r_e \lambda f_2</math> | ||
| <math>\frac{\mu}{\rho} = \frac{N_a}{m_a} \sigma</math> | | <math>\frac{\mu}{\rho} = \frac{N_a}{m_a} \sigma</math> | ||
| − | | <math>\frac{\mu}{\rho} = </math> | + | | <math>\frac{\mu}{\rho} = \frac{4 \pi M_a}{ \rho \lambda m_a } \beta</math> |
| <math>\frac{\mu}{\rho} = \frac{2 M_a \lambda}{\rho m_a } \mathrm{Im}(\mathrm{SLD})</math> | | <math>\frac{\mu}{\rho} = \frac{2 M_a \lambda}{\rho m_a } \mathrm{Im}(\mathrm{SLD})</math> | ||
|- | |- | ||
| Line 78: | Line 78: | ||
| <math>\sigma = \frac{2 \lambda M_a}{\rho N_a}\mathrm{Im}(\mathrm{SLD})</math> | | <math>\sigma = \frac{2 \lambda M_a}{\rho N_a}\mathrm{Im}(\mathrm{SLD})</math> | ||
|- | |- | ||
| − | | | + | | <math>\beta = \frac{ \lambda m_a }{4 \pi M_a \epsilon}</math> |
| − | | | + | | <math>\beta = \frac{ \lambda m_a }{4 \pi M_a} \mu</math> |
| − | | | + | | <math>\beta = \frac{ \rho \lambda m_a }{4 \pi M_a} \frac{\mu}{\rho}</math> |
| <math>\beta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_2</math> | | <math>\beta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_2</math> | ||
| <math>\beta = \frac{ \rho N_a \lambda }{4 \pi M_a} \sigma</math> | | <math>\beta = \frac{ \rho N_a \lambda }{4 \pi M_a} \sigma</math> | ||
Revision as of 18:26, 6 June 2014
The absorption length or attenuation length in x-ray scattering is the distance over which the x-ray beam is absorbed. By convention, the absorption length ϵ is defined as the distance into a material where the beam flux has dropped to 1/e of its incident flux.
Absorption
The absorption follows a simple Beer-Lambert law:
The attenuation coefficient (or absorption coefficient) is simply the inverse of the absorption length;
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {I(x)}{I_{0}}}=e^{-\mu x}}
Calculating
The absorption length arises from the imaginary part of the atomic scattering factor, f2. It is closely related to the absorption cross-section, and the mass absorption coefficient. Specifically, the atomic photoabsorption cross-section can be computed via:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sigma =2r_{e}\lambda f_{2}}
Where λ is the x-ray wavelength, and re is the classical electron radius. The attenuation coefficient is given by:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}\mu &={\frac {\rho N_{a}}{m_{a}}}\sigma \\&={\frac {\rho N_{a}}{m_{a}}}2r_{e}\lambda f_{2}\end{alignedat}}}
where ρ is density, Na is the Avogadro constant, and ma is the atomic molar mass. Note that the mass attenuation coefficient is simply .
Related forms
As can be seen, there are many related quantities which express the material's absorption:
- Absorption length , the distance over which the intensity falls to 1/e.
- Attenuation coefficient , the characteristic inverse-distance for attenuation.
- Mass attenuation coefficient , the density-scaled attenuation.
- Absorptive atomic scattering factor , the intrinsic dissipative interaction of the material.
- Atomic photoabsorption cross-section , the cross-section ('effective size') of the atom's x-ray absorption (capture) efficiency.
- Imaginary refractive index , the resonant component of the refractive index.
- Imaginary Scattering Length Density , the absorptive component of the scattering contrast.
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sigma ={\frac {m_{a}}{N_{a}}}{\frac {\mu }{\rho }}} | Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sigma =2r_{e}\lambda f_{2}} | |||||
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \beta ={\frac {\rho \lambda m_{a}}{4\pi M_{a}}}{\frac {\mu }{\rho }}} | ||||||
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \mathrm {Im} (\mathrm {SLD} )={\frac {m_{a}}{2M_{a}\lambda \epsilon }}} | Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \mathrm {Im} (\mathrm {SLD} )={\frac {m_{a}}{2M_{a}\lambda }}\mu } |