Difference between revisions of "Talk:Unit cell"

From GISAXS
Jump to: navigation, search
(Vectors (Wrong?))
Line 20: Line 20:
 
</math>
 
</math>
  
====Vectors (Wrong?)====
+
====Vectors====
 +
There are many equivalent ways to define/construct the Cartesian basis for the unit cell in real-space. The unit cell vectors can be written as:
 
:<math>\begin{array}{l}
 
:<math>\begin{array}{l}
 
\mathbf{a} = \begin{bmatrix}
 
\mathbf{a} = \begin{bmatrix}
Line 45: Line 46:
 
</math>
 
</math>
  
 +
According to [https://www.ocf.berkeley.edu/~rfu/notes/vect_unit_cells.pdf this], the vectors can be written as:
 +
:<math>\begin{array}{l}
 +
\mathbf{a} = \begin{bmatrix}
 +
a \\
 +
0 \\
 +
0
 +
\end{bmatrix} \\
 +
\mathbf{b} = \begin{bmatrix}
 +
b \cos{\gamma} \\
 +
b \sin{\gamma} \\
 +
0
 +
\end{bmatrix} \\
 +
\mathbf{c} = \begin{bmatrix}
 +
c \cos{\beta} \\
 +
c_y \\
 +
c_z \\
 +
\end{bmatrix}
 +
= \begin{bmatrix}
 +
c \cos{\beta} \\
 +
\frac{c}{\sin \gamma} \left( \cos \alpha - \cos \beta \cos \gamma \right) \\
 +
\frac{c}{\sin \gamma} \sqrt{ 1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma } \\
 +
\end{bmatrix}
 +
\end{array}
 +
</math>
 +
which is mathematically equivalent.
 +
 +
According to:
 +
* K. N. Trueblood, H.-B. Bürgi, H. Burzlaff, J. D. Dunitz, C. M. Gramaccioli, H. H. Schulz, U. Shmueli and S. C. Abrahams [https://scripts.iucr.org/cgi-bin/paper?S0108767396005697 Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature] ''Acta Cryst'' '''1996''', A52, 770-781. [https://doi.org/10.1107/S0108767396005697 doi: 10.1107/S0108767396005697]
 +
:<math>\begin{array}{l}
 +
\mathbf{a} = \begin{bmatrix}
 +
a \\
 +
0 \\
 +
0
 +
\end{bmatrix} \\
 +
\mathbf{b} = \begin{bmatrix}
 +
b \cos{\gamma} \\
 +
b \sin{\gamma} \\
 +
0
 +
\end{bmatrix} \\
 +
\mathbf{c} = \begin{bmatrix}
 +
c \cos{\beta} \\
 +
-c \sin \beta \cos \alpha^{*} \\
 +
\frac{1}{c^{*}} \\
 +
\end{bmatrix}
 +
= \begin{bmatrix}
 +
c \cos{\beta} \\
 +
\frac{c}{\sin \gamma} \left( \cos \alpha - \cos \beta \cos \gamma \right) \\
 +
\frac{c}{\sin \gamma} \sqrt{ 1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma } \\
 +
\end{bmatrix}
 +
\end{array}
 +
</math>
  
 
====TBD: Reciprocal vector components====
 
====TBD: Reciprocal vector components====

Revision as of 09:58, 14 November 2022

Extra math expressions

A given real-space cubic lattice will have dimensions:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(a,b,c\right)}

Such that the position of any particular cell within the infinite lattice is:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r}_{hkl} = \left\langle ah,bk,cl\right\rangle }

Where h, k, and l are indices. The corresponding inverse-space lattice would be:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q}_{hkl} = 2\pi \left\langle \frac{h}{a} , \frac{k}{b} , \frac{l}{c} \right\rangle }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{hkl} = 2\pi \sqrt{ \left( \frac{h}{a} \right)^2 + \left( \frac{k}{b} \right)^2 + \left( \frac{l}{c} \right)^2 } }

In the case where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=b=c} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q_{hkl} & = 2\pi \sqrt{ \left( \frac{h}{a} \right)^2 + \left( \frac{k}{a} \right)^2 + \left( \frac{l}{a} \right)^2 } \\ & = \frac{2\pi}{a} \sqrt{ h^2 + k^2 + l^2 } \end{alignat} }

Vectors

There are many equivalent ways to define/construct the Cartesian basis for the unit cell in real-space. The unit cell vectors can be written as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{l} \mathbf{a} = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{b} = \begin{bmatrix} b \cos{\gamma} \\ b \sin{\gamma} \\ 0 \end{bmatrix} \\ \mathbf{c} = \begin{bmatrix} c \sin{\theta_c} \cos{\phi_c} \\ c \sin{\theta_c} \sin{\phi_c} \\ c \cos{\theta_c} \end{bmatrix} = \begin{bmatrix} c \cos{\beta} \\ c \frac{ \cos{\alpha} - \cos{\beta}\cos{\gamma} }{\sin{\gamma}} \\ c \sqrt{ 1 - \cos^2{\beta} - \left( \frac{\cos{\alpha} - \cos{\beta}\cos{\gamma}}{\sin{\gamma}} \right)^2 } \end{bmatrix} \end{array} }

According to this, the vectors can be written as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{l} \mathbf{a} = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{b} = \begin{bmatrix} b \cos{\gamma} \\ b \sin{\gamma} \\ 0 \end{bmatrix} \\ \mathbf{c} = \begin{bmatrix} c \cos{\beta} \\ c_y \\ c_z \\ \end{bmatrix} = \begin{bmatrix} c \cos{\beta} \\ \frac{c}{\sin \gamma} \left( \cos \alpha - \cos \beta \cos \gamma \right) \\ \frac{c}{\sin \gamma} \sqrt{ 1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma } \\ \end{bmatrix} \end{array} }

which is mathematically equivalent.

According to:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{l} \mathbf{a} = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{b} = \begin{bmatrix} b \cos{\gamma} \\ b \sin{\gamma} \\ 0 \end{bmatrix} \\ \mathbf{c} = \begin{bmatrix} c \cos{\beta} \\ -c \sin \beta \cos \alpha^{*} \\ \frac{1}{c^{*}} \\ \end{bmatrix} = \begin{bmatrix} c \cos{\beta} \\ \frac{c}{\sin \gamma} \left( \cos \alpha - \cos \beta \cos \gamma \right) \\ \frac{c}{\sin \gamma} \sqrt{ 1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma } \\ \end{bmatrix} \end{array} }

TBD: Reciprocal vector components

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{u} & = ... \\ \mathbf{v} & = ... \\ \mathbf{w} & = \frac{\mathbf{a}\times\mathbf{b}}{\mathbf{a}\cdot (\mathbf{b}\times\mathbf{c}) } \\ & =\frac{1}{V} \mathbf{a}\times\mathbf{b} \\ & =\frac{1}{V} \begin{bmatrix} 0 \\ 0 \\ a b \sin{\gamma} \end{bmatrix} \\ \end{alignat} }

Calculate q_hkl generally

    def q_hkl(self, h, k, l):
        """Determines the position in reciprocal space for the given reflection."""
        
        # The 'unitcell' coordinate system assumes:
        #  a-axis lies along x-axis
        #  b-axis is in x-y plane
        #  c-axis is vertical (or at a tilt, depending on beta)
        
        # Convert from (unitcell) Cartesian to (unitcell) fractional coordinates
        reduced_volume = sqrt( 1 - (cos(self.alpha))**2 - (cos(self.beta))**2 - (cos(self.gamma))**2 + 2*cos(self.alpha)*cos(self.beta)*cos(self.gamma) )
        #volume = reduced_volume*self.lattice_spacing_a*self.lattice_spacing_b*self.lattice_spacing_c
        a = ( self.lattice_spacing_a , \
                0.0 , \
                0.0  )
        b = ( self.lattice_spacing_b*cos(self.gamma) , \
                self.lattice_spacing_b*sin(self.gamma) , \
                0.0 )
        c = ( self.lattice_spacing_c*cos(self.beta) , \
                self.lattice_spacing_c*( cos(self.alpha) - cos(self.beta)*cos(self.gamma) )/( sin(self.gamma) ) , \
                self.lattice_spacing_c*reduced_volume/( sin(self.gamma) ) )
        
        # Compute (unitcell) reciprocal-space lattice vectors
        volume = np.dot( a, np.cross(b,c) )
        u = np.cross( b, c ) / volume # Along qx
        v = np.cross( c, a ) / volume # Along qy
        w = np.cross( a, b ) / volume # Along qz
        
        qhkl_vector = 2*pi*( h*u + k*v + l*w )
        qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 )
        
        return (qhkl, qhkl_vector)

                
        
    def q_hkl_length(self, h, k, l):
        
        qhkl, qhkl_vector = self.q_hkl(h,k,l)
        #qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 )
        
        return qhkl