Difference between revisions of "Science Agents"

From GISAXS
Jump to: navigation, search
((Pre) Generate Articles)
(Mechanistic Interpretability)
 
Line 96: Line 96:
 
* [https://www.markov.bio/ Markov Bio]: [https://www.markov.bio/research/mech-interp-path-to-e2e-biology Through a Glass Darkly: Mechanistic Interpretability as the Bridge to End-to-End Biology] ([https://x.com/adamlewisgreen/status/1853206279499751531 quick description], [https://markovbio.github.io/biomedical-progress/ background info on recent bio progress])
 
* [https://www.markov.bio/ Markov Bio]: [https://www.markov.bio/research/mech-interp-path-to-e2e-biology Through a Glass Darkly: Mechanistic Interpretability as the Bridge to End-to-End Biology] ([https://x.com/adamlewisgreen/status/1853206279499751531 quick description], [https://markovbio.github.io/biomedical-progress/ background info on recent bio progress])
 
* 2023-01: [https://arxiv.org/abs/2301.05062 Tracr: Compiled Transformers as a Laboratory for Interpretability] ([https://github.com/google-deepmind/tracr code])
 
* 2023-01: [https://arxiv.org/abs/2301.05062 Tracr: Compiled Transformers as a Laboratory for Interpretability] ([https://github.com/google-deepmind/tracr code])
 +
* 2024-10: [https://arxiv.org/abs/2410.03334 An X-Ray Is Worth 15 Features: Sparse Autoencoders for Interpretable Radiology Report Generation]
 
* 2024-12: [https://www.arxiv.org/abs/2412.16247 Towards scientific discovery with dictionary learning: Extracting biological concepts from microscopy foundation models]
 
* 2024-12: [https://www.arxiv.org/abs/2412.16247 Towards scientific discovery with dictionary learning: Extracting biological concepts from microscopy foundation models]
 
* 2024-12: [https://arxiv.org/abs/2412.12101 InterPLM: Discovering Interpretable Features in Protein Language Models via Sparse Autoencoders]
 
* 2024-12: [https://arxiv.org/abs/2412.12101 InterPLM: Discovering Interpretable Features in Protein Language Models via Sparse Autoencoders]
 
* 2025-01: [https://arxiv.org/abs/2501.00089 Insights on Galaxy Evolution from Interpretable Sparse Feature Networks]
 
* 2025-01: [https://arxiv.org/abs/2501.00089 Insights on Galaxy Evolution from Interpretable Sparse Feature Networks]
 
* 2025-02: [https://www.biorxiv.org/content/10.1101/2025.02.06.636901v1 From Mechanistic Interpretability to Mechanistic Biology: Training, Evaluating, and Interpreting Sparse Autoencoders on Protein Language Models]
 
* 2025-02: [https://www.biorxiv.org/content/10.1101/2025.02.06.636901v1 From Mechanistic Interpretability to Mechanistic Biology: Training, Evaluating, and Interpreting Sparse Autoencoders on Protein Language Models]
 +
* 2025-02: [https://www.goodfire.ai/blog/interpreting-evo-2 Interpreting Evo 2: Arc Institute's Next-Generation Genomic Foundation Model]
  
 
===Uncertainty===
 
===Uncertainty===

Latest revision as of 10:40, 29 March 2025

AI Use-cases for Science

Literature

LLM extract data from papers

AI finding links in literature

(Pre) Generate Articles

Explanation

Autonomous Ideation

Adapting LLMs to Science

AI/ML Methods tailored to Science

Regression (Data Fitting)

Tabular Classification/Regression

Symbolic Regression

Literature Discovery

Commercial

AI/ML Methods in Science

Chemistry

Biology

Successes

AI/ML Methods co-opted for Science

Mechanistic Interpretability

Train large model on science data. Then apply mechanistic interpretability (e.g. sparse autoencoders, SAE) to the feature/activation space.

Uncertainty

Science Benchmarks

Science Agents

Reviews

Specific

Science Multi-Agent Setups

AI Science Systems

Inorganic Materials Discovery

Chemistry

LLMs Optimized for Science

Impact of AI in Science

Related Tools

Literature Search

Data Visualization

Generative

Chemistry

See Also