Difference between revisions of "Talk:Unit cell"
KevinYager (talk | contribs) |
KevinYager (talk | contribs) |
||
| Line 31: | Line 31: | ||
\end{alignat} | \end{alignat} | ||
</math> | </math> | ||
| + | |||
| + | ==Calculate q_hkl generally== | ||
| + | <source lang="python"> | ||
| + | def q_hkl(self, h, k, l): | ||
| + | """Determines the position in reciprocal space for the given reflection.""" | ||
| + | |||
| + | # The 'unitcell' coordinate system assumes: | ||
| + | # a-axis lies along x-axis | ||
| + | # b-axis is in x-y plane | ||
| + | # c-axis is vertical (or at a tilt, depending on beta) | ||
| + | |||
| + | # Convert from (unitcell) Cartesian to (unitcell) fractional coordinates | ||
| + | reduced_volume = sqrt( 1 - (cos(self.alpha))**2 - (cos(self.beta))**2 - (cos(self.gamma))**2 + 2*cos(self.alpha)*cos(self.beta)*cos(self.gamma) ) | ||
| + | #volume = reduced_volume*self.lattice_spacing_a*self.lattice_spacing_b*self.lattice_spacing_c | ||
| + | a = ( self.lattice_spacing_a , \ | ||
| + | 0.0 , \ | ||
| + | 0.0 ) | ||
| + | b = ( self.lattice_spacing_b*cos(self.gamma) , \ | ||
| + | self.lattice_spacing_b*sin(self.gamma) , \ | ||
| + | 0.0 ) | ||
| + | c = ( self.lattice_spacing_c*cos(self.beta) , \ | ||
| + | self.lattice_spacing_c*( cos(self.alpha) - cos(self.beta)*cos(self.gamma) )/( sin(self.gamma) ) , \ | ||
| + | self.lattice_spacing_c*reduced_volume/( sin(self.gamma) ) ) | ||
| + | |||
| + | # Compute (unitcell) reciprocal-space lattice vectors | ||
| + | volume = np.dot( a, np.cross(b,c) ) | ||
| + | u = np.cross( b, c ) / volume # Along qx | ||
| + | v = np.cross( c, a ) / volume # Along qy | ||
| + | w = np.cross( a, b ) / volume # Along qz | ||
| + | |||
| + | qhkl_vector = 2*pi*( h*u + k*v + l*w ) | ||
| + | qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 ) | ||
| + | |||
| + | return (qhkl, qhkl_vector) | ||
| + | |||
| + | |||
| + | |||
| + | def q_hkl_length(self, h, k, l): | ||
| + | |||
| + | qhkl, qhkl_vector = self.q_hkl(h,k,l) | ||
| + | #qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 ) | ||
| + | |||
| + | return qhkl | ||
| + | </source> | ||
Revision as of 11:18, 13 April 2020
Extra math expressions
A given real-space cubic lattice will have dimensions:
Such that the position of any particular cell within the infinite lattice is:
Where h, k, and l are indices. The corresponding inverse-space lattice would be:
In the case where :
TBD: Reciprocal vector components
Calculate q_hkl generally
def q_hkl(self, h, k, l):
"""Determines the position in reciprocal space for the given reflection."""
# The 'unitcell' coordinate system assumes:
# a-axis lies along x-axis
# b-axis is in x-y plane
# c-axis is vertical (or at a tilt, depending on beta)
# Convert from (unitcell) Cartesian to (unitcell) fractional coordinates
reduced_volume = sqrt( 1 - (cos(self.alpha))**2 - (cos(self.beta))**2 - (cos(self.gamma))**2 + 2*cos(self.alpha)*cos(self.beta)*cos(self.gamma) )
#volume = reduced_volume*self.lattice_spacing_a*self.lattice_spacing_b*self.lattice_spacing_c
a = ( self.lattice_spacing_a , \
0.0 , \
0.0 )
b = ( self.lattice_spacing_b*cos(self.gamma) , \
self.lattice_spacing_b*sin(self.gamma) , \
0.0 )
c = ( self.lattice_spacing_c*cos(self.beta) , \
self.lattice_spacing_c*( cos(self.alpha) - cos(self.beta)*cos(self.gamma) )/( sin(self.gamma) ) , \
self.lattice_spacing_c*reduced_volume/( sin(self.gamma) ) )
# Compute (unitcell) reciprocal-space lattice vectors
volume = np.dot( a, np.cross(b,c) )
u = np.cross( b, c ) / volume # Along qx
v = np.cross( c, a ) / volume # Along qy
w = np.cross( a, b ) / volume # Along qz
qhkl_vector = 2*pi*( h*u + k*v + l*w )
qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 )
return (qhkl, qhkl_vector)
def q_hkl_length(self, h, k, l):
qhkl, qhkl_vector = self.q_hkl(h,k,l)
#qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 )
return qhkl