Difference between revisions of "Talk:Neutron scattering lengths"
KevinYager (talk | contribs) (→Origin of the scattering lengths) |
KevinYager (talk | contribs) (→Origin of the scattering lengths) |
||
Line 1: | Line 1: | ||
==Origin of the scattering lengths== | ==Origin of the scattering lengths== | ||
The following description is adapted from [http://www.ncnr.nist.gov/programs/sans/pdf/polymer_tut.pdf Boualem Hammouda's (NCNR) SANS tutorial]. | The following description is adapted from [http://www.ncnr.nist.gov/programs/sans/pdf/polymer_tut.pdf Boualem Hammouda's (NCNR) SANS tutorial]. | ||
− | + | ===Neutron energy=== | |
− | Consider first the energies of neutrons used in scattering experiments. A thermal neutron | + | Consider first the energies of neutrons used in scattering experiments (recall the neutron mass is 1.67×10<sup>−27</sup> kg). A thermal neutron (~100°C) would have energy of: |
− | , the | + | :<math> |
− | + | \mathrm{KE} = \frac{1}{2} m v^2 = \frac{3}{2} kT = 7 \times 10^{-21} \, \mathrm{J} = 48 \,\mathrm{meV} | |
+ | </math> | ||
+ | The velocity of such neutrons is ~3000 m/s, and the momentum is <math>p=mv=5\times10^{-24} \, \mathrm{kgm/s}</math>. Finally, the deBroglie wavelength would be: | ||
+ | :<math> | ||
+ | \lambda = \frac{h}{p} = 1.3 \, \AA | ||
+ | </math> | ||
+ | A cold neutron (~18 K) would have energy of 4×10<sup>−22</sup> J = 2 meV, velocity of ~660 m/s, and wavelength of 6 Å. | ||
+ | ===Potential well=== | ||
Consider a neutron of energy <math>E_i</math> interacting with a nucleus, which exhibits an attractive square well of depth <math>-V_0</math> and width <math>2R</math>; where <math>V_0 \gg E_i</math>. The [http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation Schrödinger equation] is: | Consider a neutron of energy <math>E_i</math> interacting with a nucleus, which exhibits an attractive square well of depth <math>-V_0</math> and width <math>2R</math>; where <math>V_0 \gg E_i</math>. The [http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation Schrödinger equation] is: | ||
:<math> | :<math> |
Revision as of 01:57, 6 June 2014
Origin of the scattering lengths
The following description is adapted from Boualem Hammouda's (NCNR) SANS tutorial.
Neutron energy
Consider first the energies of neutrons used in scattering experiments (recall the neutron mass is 1.67×10−27 kg). A thermal neutron (~100°C) would have energy of:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{KE} = \frac{1}{2} m v^2 = \frac{3}{2} kT = 7 \times 10^{-21} \, \mathrm{J} = 48 \,\mathrm{meV} }
The velocity of such neutrons is ~3000 m/s, and the momentum is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=mv=5\times10^{-24} \, \mathrm{kgm/s}} . Finally, the deBroglie wavelength would be:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda = \frac{h}{p} = 1.3 \, \AA }
A cold neutron (~18 K) would have energy of 4×10−22 J = 2 meV, velocity of ~660 m/s, and wavelength of 6 Å.
Potential well
Consider a neutron of energy Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_i} interacting with a nucleus, which exhibits an attractive square well of depth Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -V_0} and width Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2R} ; where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0 \gg E_i} . The Schrödinger equation is:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ - \frac{h^2}{8 \pi^2 m}\nabla^2 + V(r) \right] \psi(r) = E \psi(r) }
Outside of the square-well (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|>R} ), Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r)=0} , and so the equation is solved as simply:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_{s,\mathrm{out}} = \frac{\sin(kr)}{kr} - b \frac{e^{ikr}}{r} }
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=\sqrt{2mE_i} 2 \pi/h} . Inside the square-well (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|<R} ), the potential is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r)=-V_0} , and the solution becomes:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_{s,\mathrm{in}} = A \frac{\sin(qr)}{qr} }
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=\sqrt{2m(E_i+V_0)} 2 \pi/h} . The two solutions are subject to a continuity boundary condition at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|=R} :
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \psi_{s,\mathrm{out}} (r=R) & = \psi_{s,\mathrm{in}} (r=R) \\ \frac{\mathrm{d}}{\mathrm{d}r} \psi_{s,\mathrm{out}} (r=R) & = \frac{\mathrm{d}}{\mathrm{d}r} \psi_{s,\mathrm{in}} (r=R) \end{alignat} }
Note that the mass of a neutron is ~10−27 kg
Note that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle kR = \sqrt{2 m E_i} R 2\pi/h \ll 1} for , and