Difference between revisions of "Talk:Scattering"
KevinYager (talk | contribs) (→TSAXS 3d) |
KevinYager (talk | contribs) (→TSAXS 3d) |
||
Line 7: | Line 7: | ||
:<math> | :<math> | ||
\begin{alignat}{2} | \begin{alignat}{2} | ||
− | \theta_f & = \arctan( x | + | \theta_f & = \arctan\left( \frac{x}{d} \right) \\ |
− | \alpha_f ^\prime & = \arctan( z/ | + | \alpha_f ^\prime & = \arctan\left( \frac{z}{d} \right) \\ |
+ | \alpha_f & = \arctan \left( \frac{z }{d / \cos \theta_f} \right) | ||
\end{alignat} | \end{alignat} | ||
</math> | </math> | ||
− | where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The [[momentum transfer]] components are: | + | where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The alternate angle, <math>\scriptstyle \alpha_f </math>, is the elevation angle in the plane defined by <math>\scriptstyle \theta_f </math>. |
+ | |||
+ | The [[momentum transfer]] components are: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f \\ | ||
+ | q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f - 1 \right ) \\ | ||
+ | q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | Or: | ||
:<math> | :<math> | ||
\begin{alignat}{2} | \begin{alignat}{2} |
Revision as of 18:19, 29 December 2015
TSAXS 3d
The q-vector in fact has three components:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q} = \begin{bmatrix} q_x & q_y & q_z \end{bmatrix} }
Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle (x,z) } . The scattering angles are then:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \theta_f & = \arctan\left( \frac{x}{d} \right) \\ \alpha_f ^\prime & = \arctan\left( \frac{z}{d} \right) \\ \alpha_f & = \arctan \left( \frac{z }{d / \cos \theta_f} \right) \end{alignat} }
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle d} is the sample-detector distance, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \alpha_f ^{\prime} } is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \theta_f } is the in-plane component (rotation about z-axis). The alternate angle, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \alpha_f } , is the elevation angle in the plane defined by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \theta_f } .
The momentum transfer components are:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f \\ q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f - 1 \right ) \\ q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f \end{alignat} }
Or:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f^\prime \\ q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f^\prime - 1 \right ) \\ q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f^\prime \cos \theta_f \end{alignat} }
And, of course:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \end{alignat} }