Difference between revisions of "Talk:Scattering"
KevinYager (talk | contribs) (→later) |
KevinYager (talk | contribs) (→later) |
||
| Line 37: | Line 37: | ||
\begin{alignat}{2} | \begin{alignat}{2} | ||
q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ | q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ | ||
| − | & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ | + | & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ |
| − | \frac{q}{k} & = \sqrt{ (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 } \\ | + | \frac{q}{k} |
| − | & = | + | & = \sqrt{ (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 } \\ |
| − | & = | + | \frac{q^2}{k^2} |
| + | & = \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f /d }{\sqrt{1+(z \cos \theta_f /d)^2}} \right)^2 \\ | ||
| + | & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\ | ||
| + | & = \frac{x^2}{d^2+x^2} \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ | ||
| + | & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ | ||
& = ? \\ | & = ? \\ | ||
& = ? \\ | & = ? \\ | ||
| Line 46: | Line 50: | ||
& = ? \\ | & = ? \\ | ||
& = ? \\ | & = ? \\ | ||
| − | & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\ | + | & = \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} \\ |
| + | \frac{q}{k} & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\ | ||
& = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\ | & = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\ | ||
& = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\ | & = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\ | ||
& = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ | & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ | ||
| − | & = \sin \left( 2 \theta_s \right) | + | q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right) |
\end{alignat} | \end{alignat} | ||
</math> | </math> | ||
Revision as of 18:14, 29 December 2015
TSAXS 3D
The q-vector in fact has three components:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q} = \begin{bmatrix} q_x & q_y & q_z \end{bmatrix} }
Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle (x,z) } . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:
The momentum transfer components are:
later
As a check: