Difference between revisions of "Talk:Scattering"

From GISAXS
Jump to: navigation, search
(TSAXS 3D)
(TSAXS 3D)
Line 35: Line 35:
 
\cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\
 
\cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\
 
\cos( 2 \theta_s ) & = \frac{1}{\sqrt{1 + (\sqrt{x^2+z^2}/d)^2}} \\
 
\cos( 2 \theta_s ) & = \frac{1}{\sqrt{1 + (\sqrt{x^2+z^2}/d)^2}} \\
     & = \frac{d^2}{\sqrt{d^2+x^2+z^2}}
+
     & = \frac{d}{\sqrt{d^2+x^2+z^2}}
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
Line 42: Line 42:
 
\begin{alignat}{2}
 
\begin{alignat}{2}
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} }
+
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} }
+
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) }
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 10:25, 30 December 2015

TSAXS 3D

The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle (x,z) } . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:

The total momentum transfer is:

Given that:

We can also write:

The momentum transfer components are:

In-plane only

If (and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \alpha_f ^{\prime} = 0} ), then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle q_z = 0 } , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 2 \theta_s = \theta_f } , and:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q = k \sin \theta_f }

Check

As a check of these results, consider:

Where we used:

And, we further note that:

cont

Continuing:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \frac{q^2}{k^2} & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \frac{d^2}{\sqrt{d^2+x^2}} \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 }{d^2+z^2 \cos^2 \theta_f } \frac{d^4}{d^2+x^2} \\ & = d^4\frac{x^2+z^2}{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)} + \left ( \frac{d^4}{\sqrt{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}} - 1 \right )^2 \\ & = \frac{d^4x^2+d^4z^2}{d^4+d^2x^2+d^4z^2} + \left ( \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} - 1 \right )^2 \\ & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2} + \left ( \frac{d^8}{d^4+d^2x^2+d^4z^2} -2 \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} + 1 \right ) \\ & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2} + \frac{d^6}{d^2+x^2+d^2z^2} -2 \frac{d^3}{\sqrt{d^2+x^2+d^2z^2}} + 1 \\ & = \frac{d^2x^2+d^2z^2 + d^6 -2d^3\sqrt{d^2+x^2+d^2z^2} + d^2+x^2+d^2z^2}{d^2+x^2+d^2z^2} \\ & = \frac{d^6 + d^2 + d^2x^2 + x^2 + 2d^2z^2 -2d^3\sqrt{d^2+x^2+d^2z^2}}{d^2+x^2+d^2z^2} \\ & = \frac{ (x^2 + z^2) } {(d^2 + x^2 + z^2)} \frac{(d^2 + x^2 + z^2)}{ (x^2 + z^2) } \frac{d^6 + d^2(1+x^2+2z^2) + x^2 -2d^3\sqrt{d^2(1+z^2)+x^2}}{d^2(1+z^2)+x^2} \\ & = ? \\ & = \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} \\ \frac{q}{k} & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\ & = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\ & = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\ & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right) \end{alignat} }