|
|
| Line 35: |
Line 35: |
| | \cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\ | | \cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\ |
| | \cos( 2 \theta_s ) & = \frac{1}{\sqrt{1 + (\sqrt{x^2+z^2}/d)^2}} \\ | | \cos( 2 \theta_s ) & = \frac{1}{\sqrt{1 + (\sqrt{x^2+z^2}/d)^2}} \\ |
| − | & = \frac{d^2}{\sqrt{d^2+x^2+z^2}} | + | & = \frac{d}{\sqrt{d^2+x^2+z^2}} |
| | \end{alignat} | | \end{alignat} |
| | </math> | | </math> |
| Line 42: |
Line 42: |
| | \begin{alignat}{2} | | \begin{alignat}{2} |
| | q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\ | | q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\ |
| − | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } | + | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\ |
| − | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } | + | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) } |
| | \end{alignat} | | \end{alignat} |
| | </math> | | </math> |
Revision as of 10:25, 30 December 2015
The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle (x,z) }
. The scattering angles are then:
![{\displaystyle {\begin{alignedat}{2}\theta _{f}&=\arctan \left[{\frac {x}{d}}\right]\\\alpha _{f}^{\prime }&=\arctan \left[{\frac {z}{d}}\right]\\\alpha _{f}&=\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/facc9ad57cd58f15e7403d40dc08f08815d3662b)
where
is the sample-detector distance,
is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and
is the in-plane component (rotation about z-axis). The alternate angle,
, is the elevation angle in the plane defined by
. Also note that the full scattering angle is:
![{\displaystyle {\begin{alignedat}{2}2\theta _{s}=\Theta &=\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\\&=\arctan \left[{\frac {\sqrt {(d\tan \theta _{f})^{2}+(d\tan \alpha _{f}^{\prime })^{2}}}{d}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+\tan ^{2}\alpha _{f}^{\prime }}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+{\frac {\tan ^{2}\alpha _{f}}{\cos ^{2}\theta _{f}}}}}\right]\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce190aa4f7dd836349234c33033cb245c49d4f20)
The total momentum transfer is:
![{\displaystyle {\begin{alignedat}{2}q&={\frac {4\pi }{\lambda }}\sin \left(\theta _{s}\right)\\&={\frac {4\pi }{\lambda }}\sin \left({\frac {1}{2}}\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/978ccef9bfce6510674b68221b9f287f94e0bc79)
Given that:
![{\displaystyle {\begin{alignedat}{2}\cos(\arctan[u])&={\frac {1}{\sqrt {1+u^{2}}}}\\\cos(2\theta _{s})&={\frac {1}{\sqrt {1+({\sqrt {x^{2}+z^{2}}}/d)^{2}}}}\\&={\frac {d}{\sqrt {d^{2}+x^{2}+z^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07a031cc7bdbb545bcbf2e5d51b1899f74c01e74)
We can also write:

The momentum transfer components are:

In-plane only
If
(and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \alpha_f ^{\prime} = 0}
), then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle q_z = 0 }
, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 2 \theta_s = \theta_f }
, and:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q = k \sin \theta_f }
Check
As a check of these results, consider:

Where we used:
![{\displaystyle {\begin{alignedat}{2}\sin(\arctan[u])&={\frac {u}{\sqrt {1+u^{2}}}}\\\sin \theta _{f}&=\sin(\arctan[x/d])\\&={\frac {x/d}{\sqrt {1+(x/d)^{2}}}}\\&={\frac {x}{\sqrt {d^{2}+x^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fc9628f0d308053600f4e02d8f80c69fc9f356d0)
And, we further note that:
![{\displaystyle {\begin{alignedat}{2}\cos(\arctan[u])&={\frac {1}{\sqrt {1+u^{2}}}}\\\cos \theta _{f}&={\frac {1}{\sqrt {1+(x/d)^{2}}}}\\&={\frac {d^{2}}{\sqrt {d^{2}+x^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/584da470743b7feac2b55988526dabce5b4313c4)
cont
Continuing:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \frac{q^2}{k^2} & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \frac{d^2}{\sqrt{d^2+x^2}} \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 }{d^2+z^2 \cos^2 \theta_f } \frac{d^4}{d^2+x^2} \\ & = d^4\frac{x^2+z^2}{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)} + \left ( \frac{d^4}{\sqrt{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}} - 1 \right )^2 \\ & = \frac{d^4x^2+d^4z^2}{d^4+d^2x^2+d^4z^2} + \left ( \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} - 1 \right )^2 \\ & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2} + \left ( \frac{d^8}{d^4+d^2x^2+d^4z^2} -2 \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} + 1 \right ) \\ & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2} + \frac{d^6}{d^2+x^2+d^2z^2} -2 \frac{d^3}{\sqrt{d^2+x^2+d^2z^2}} + 1 \\ & = \frac{d^2x^2+d^2z^2 + d^6 -2d^3\sqrt{d^2+x^2+d^2z^2} + d^2+x^2+d^2z^2}{d^2+x^2+d^2z^2} \\ & = \frac{d^6 + d^2 + d^2x^2 + x^2 + 2d^2z^2 -2d^3\sqrt{d^2+x^2+d^2z^2}}{d^2+x^2+d^2z^2} \\ & = \frac{ (x^2 + z^2) } {(d^2 + x^2 + z^2)} \frac{(d^2 + x^2 + z^2)}{ (x^2 + z^2) } \frac{d^6 + d^2(1+x^2+2z^2) + x^2 -2d^3\sqrt{d^2(1+z^2)+x^2}}{d^2(1+z^2)+x^2} \\ & = ? \\ & = \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} \\ \frac{q}{k} & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\ & = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\ & = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\ & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right) \end{alignat} }