|
|
Line 10: |
Line 10: |
| </math> | | </math> |
| | | |
− | And solve: | + | And calculate: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
Line 22: |
Line 22: |
| & + \left( d \sin \theta_g + z \cos \theta_g \right)^2 ] \end{alignat} \\ | | & + \left( d \sin \theta_g + z \cos \theta_g \right)^2 ] \end{alignat} \\ |
| | | |
| + | & = \begin{alignat}{2} [ |
| + | & x^2 \cos^2 \phi_g - x \cos \phi_g \sin \phi_g ( v_{2y} ) + \sin^2 \phi_g ( v_{2y} )^2 \\ |
| + | & + x^2 \sin^2 \phi_g + x \sin \phi_g \cos \phi_g ( v_{2y} ) - d^{\prime} x \sin \phi_g \\ |
| + | & + x \sin \phi_g \cos \phi_g ( v_{2y} ) + \cos^2 \phi_g ( v_{2y} )^2 - d^{\prime} \cos \phi_g ( v_{2y} ) \\ |
| + | & - d^{\prime} x \sin \phi_g - d^{\prime} \cos \phi_g ( v_{2y} ) + d^{\prime 2} \\ |
| + | & + d^2 \sin^2 \theta_g + d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\ |
| + | \end{alignat} |
| + | </math> |
| + | Grouping and rearranging: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \left ( \frac{q}{k} \right )^2 d^{\prime 2} |
| & = \begin{alignat}{2} [ | | & = \begin{alignat}{2} [ |
| & x^2 \cos^2 \phi_g - x \cos \phi_g \sin \phi_g ( v_{2y} ) + \sin^2 \phi_g ( v_{2y} )^2 \\ | | & x^2 \cos^2 \phi_g - x \cos \phi_g \sin \phi_g ( v_{2y} ) + \sin^2 \phi_g ( v_{2y} )^2 \\ |
Revision as of 16:14, 13 January 2016
Check
We define:

And calculate:
![{\displaystyle {\begin{alignedat}{2}q^{2}&=[(q_{x})^{2}+(q_{y})^{2}+(q_{z})^{2}]\\\left({\frac {q}{k}}\right)^{2}d^{\prime 2}&={\begin{alignedat}{2}[&\left(x\cos \phi _{g}-\sin \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)^{2}\\&+\left(x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-d^{\prime }\right)^{2}\\&+\left(d\sin \theta _{g}+z\cos \theta _{g}\right)^{2}]\end{alignedat}}\\&={\begin{alignedat}{2}[&\left(x\cos \phi _{g}-\sin \phi _{g}(v_{2y})\right)^{2}\\&+\left(x\sin \phi _{g}+\cos \phi _{g}(v_{2y})-d^{\prime }\right)^{2}\\&+\left(d\sin \theta _{g}+z\cos \theta _{g}\right)^{2}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}\cos ^{2}\phi _{g}-x\cos \phi _{g}\sin \phi _{g}(v_{2y})+\sin ^{2}\phi _{g}(v_{2y})^{2}\\&+x^{2}\sin ^{2}\phi _{g}+x\sin \phi _{g}\cos \phi _{g}(v_{2y})-d^{\prime }x\sin \phi _{g}\\&+x\sin \phi _{g}\cos \phi _{g}(v_{2y})+\cos ^{2}\phi _{g}(v_{2y})^{2}-d^{\prime }\cos \phi _{g}(v_{2y})\\&-d^{\prime }x\sin \phi _{g}-d^{\prime }\cos \phi _{g}(v_{2y})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e1d130272f812a340935d488b10bdb7a1dbacb3f)
Grouping and rearranging:
![{\displaystyle {\begin{alignedat}{2}\left({\frac {q}{k}}\right)^{2}d^{\prime 2}&={\begin{alignedat}{2}[&x^{2}\cos ^{2}\phi _{g}-x\cos \phi _{g}\sin \phi _{g}(v_{2y})+\sin ^{2}\phi _{g}(v_{2y})^{2}\\&+x^{2}\sin ^{2}\phi _{g}+x\sin \phi _{g}\cos \phi _{g}(v_{2y})-d^{\prime }x\sin \phi _{g}\\&+x\sin \phi _{g}\cos \phi _{g}(v_{2y})+\cos ^{2}\phi _{g}(v_{2y})^{2}-d^{\prime }\cos \phi _{g}(v_{2y})\\&-d^{\prime }x\sin \phi _{g}-d^{\prime }\cos \phi _{g}(v_{2y})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&=?\\&=?\\&=?\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}+2d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\\&=2d^{\prime }\left(d^{\prime }-x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)\\\left({\frac {q}{k}}\right)^{2}&=2\left(1-{\frac {x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})}{d^{\prime }}}\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/85150361ac41a0429cb81c62717b584f7f3dd94a)