|
|
Line 103: |
Line 103: |
| & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( v_{2y} )\\ | | & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( v_{2y} )\\ |
| | | |
− | | + | & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) \\ |
− | & = ? \\
| + | & = 2 d^{\prime} \left( d^{\prime} - x \sin \phi_g - \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) \right) \\ |
− | & = ? \\
| |
− | & = ? \\
| |
− | & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g + 2 d^{\prime} \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) \\ | |
− | & = 2 d^{\prime} \left( d^{\prime} - x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) \right) \\ | |
| \left( \frac{q}{k} \right)^2 | | \left( \frac{q}{k} \right)^2 |
| & = 2 \left( 1 - \frac{x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g )}{d^{\prime} } \right) | | & = 2 \left( 1 - \frac{x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g )}{d^{\prime} } \right) |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 17:20, 13 January 2016
Check of Total Magnitude #1: Doesn't work
![{\displaystyle {\begin{alignedat}{2}\left({\frac {q}{k}}\right)^{2}d^{\prime 2}&={\begin{alignedat}{2}[&\left(x\cos \phi _{g}-\sin \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)^{2}\\&+\left(x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-d^{\prime }\right)^{2}\\&+\left(d\sin \theta _{g}+z\cos \theta _{g}\right)^{2}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}\cos ^{2}\phi _{g}-x\cos \phi _{g}\sin \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+\sin ^{2}\phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})^{2}\\&+x^{2}\sin ^{2}\phi _{g}+x\sin \phi _{g}\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-d^{\prime }x\sin \phi _{g}\\&+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})x\sin \phi _{g}+\cos ^{2}\phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})^{2}-d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\\&-d^{\prime }x\sin \phi _{g}-d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2d\sin \theta _{g}z\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}\cos ^{2}\phi _{g}-x\cos \phi _{g}\sin \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+\sin ^{2}\phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})^{2}\\&+x^{2}\sin ^{2}\phi _{g}+2x\sin \phi _{g}\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-2d^{\prime }x\sin \phi _{g}\\&+\cos ^{2}\phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})^{2}-2d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2d\sin \theta _{g}z\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}-x\sin \phi _{g}\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+(d\cos \theta _{g}-z\sin \theta _{g})^{2}\\&+2x\sin \phi _{g}\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-2d^{\prime }x\sin \phi _{g}\\&-2d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}+d^{2}\cos ^{2}\theta _{g}-2dz\cos \theta _{g}\sin \theta _{g}+z^{2}\sin ^{2}\theta _{g}\\&+(-x\sin \phi _{g}\cos \phi _{g}+2x\sin \phi _{g}\cos \phi _{g}-2d^{\prime }\cos \phi _{g})(d\cos \theta _{g}-z\sin \theta _{g})\\&-2d^{\prime }x\sin \phi _{g}\\&+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&d^{\prime 2}+x^{2}+d^{2}+z^{2}-2dz\cos \theta _{g}\sin \theta _{g}\\&+(x\sin \phi _{g}\cos \phi _{g}-2d^{\prime }\cos \phi _{g})(d\cos \theta _{g}-z\sin \theta _{g})\\&+2dz\sin \theta _{g}\cos \theta _{g}-2d^{\prime }x\sin \phi _{g}]\end{alignedat}}\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}+(x\sin \phi _{g}\cos \phi _{g}-2d^{\prime }\cos \phi _{g})(d\cos \theta _{g}-z\sin \theta _{g})\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}+(x\sin \phi _{g}-2d^{\prime })\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\\&=?\\&=?\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}+2d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\\&=2d^{\prime }\left(d^{\prime }-x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)\\\left({\frac {q}{k}}\right)^{2}&=2\left(1-{\frac {x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})}{d^{\prime }}}\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d68c5043400ca1ea8111f1b9af10b554eaa6be9)
Check of Total Magnitude #2: Doesn't work
We define:

And calculate:
![{\displaystyle {\begin{alignedat}{2}q^{2}&=[(q_{x})^{2}+(q_{y})^{2}+(q_{z})^{2}]\\\left({\frac {q}{k}}\right)^{2}d^{\prime 2}&={\begin{alignedat}{2}[&\left(x\cos \phi _{g}-\sin \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)^{2}\\&+\left(x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-d^{\prime }\right)^{2}\\&+\left(d\sin \theta _{g}+z\cos \theta _{g}\right)^{2}]\end{alignedat}}\\&={\begin{alignedat}{2}[&\left(x\cos \phi _{g}-\sin \phi _{g}(v_{2y})\right)^{2}\\&+\left(x\sin \phi _{g}+\cos \phi _{g}(v_{2y})-d^{\prime }\right)^{2}\\&+\left(d\sin \theta _{g}+z\cos \theta _{g}\right)^{2}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}\cos ^{2}\phi _{g}-2x\cos \phi _{g}\sin \phi _{g}(v_{2y})+\sin ^{2}\phi _{g}(v_{2y})^{2}\\&+x^{2}\sin ^{2}\phi _{g}+x\sin \phi _{g}\cos \phi _{g}(v_{2y})-d^{\prime }x\sin \phi _{g}\\&+x\sin \phi _{g}\cos \phi _{g}(v_{2y})+\cos ^{2}\phi _{g}(v_{2y})^{2}-d^{\prime }\cos \phi _{g}(v_{2y})\\&-d^{\prime }x\sin \phi _{g}-d^{\prime }\cos \phi _{g}(v_{2y})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e612faf4f524572741f1caedf9cda805a8eb2c5)
Grouping and rearranging:
![{\displaystyle {\begin{alignedat}{2}\left({\frac {q}{k}}\right)^{2}d^{\prime 2}&={\begin{alignedat}{2}[&x^{2}+(v_{2y})^{2}\\&-2d^{\prime }x\sin \phi _{g}\\&-2d^{\prime }\cos \phi _{g}(v_{2y})\\&+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&d^{\prime 2}+x^{2}+(d^{2}\cos ^{2}\theta _{g}-2dz\cos \theta _{g}\sin \theta _{g}+z^{2}\sin ^{2}\theta _{g})\\&-2d^{\prime }x\sin \phi _{g}-2d^{\prime }\cos \phi _{g}(v_{2y})\\&+d^{2}\sin ^{2}\theta _{g}+2dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&d^{\prime 2}+x^{2}+d^{2}+z^{2}\\&-2d^{\prime }x\sin \phi _{g}-2d^{\prime }\cos \phi _{g}(v_{2y})]\end{alignedat}}\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}-2d^{\prime }\cos \phi _{g}(v_{2y})\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}-2d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\\&=2d^{\prime }\left(d^{\prime }-x\sin \phi _{g}-\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)\\\left({\frac {q}{k}}\right)^{2}&=2\left(1-{\frac {x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})}{d^{\prime }}}\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/71c282927abe9fc87d449a305d287da3d84a3fb0)