Difference between revisions of "Unit cell"
KevinYager (talk | contribs) (→Reciprocal vectors) |
KevinYager (talk | contribs) (→See Also) |
||
| Line 180: | Line 180: | ||
==See Also== | ==See Also== | ||
* [[Lattices]] | * [[Lattices]] | ||
| + | * K. N. Trueblood, H.-B. Bürgi, H. Burzlaff, J. D. Dunitz, C. M. Gramaccioli, H. H. Schulz, U. Shmueli and S. C. Abrahams [https://scripts.iucr.org/cgi-bin/paper?S0108767396005697 Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature] ''Acta Cryst'' '''1996''', A52, 770-781. [https://doi.org/10.1107/S0108767396005697 doi: 10.1107/S0108767396005697] | ||
Revision as of 09:29, 14 November 2022
The unit cell is the basic building block of a crystal lattice (whether an atomic crystal or a nanoscale superlattice). Crystalline materials have a periodic structure, with the unit cell being the minimal volume necessary to fully describe the repeating structure. There are a finite number of possible symmetries for the repeating unit cell.
A unit cell can be defined by three vectors that lie along the edges of the enclosing parallelepped. We denote the vectors as , , and ; alternately the unit cell can be described by the lengths of these vectors (, , ), and the angles between them:
- , the angle between and
- , the angle between and
- , the angle between and
Contents
Mathematical description
Vectors
Relations
Volume
If a, b, and c are the parallelepiped edge lengths, and α, β, and γ are the internal angles between the edges, the volume is
The volume of a unit cell with all edge-length equal to unity is:
Angles
- is the angle between and
- is the angle between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{c}}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} is the angle between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{b}} and
Reciprocal vectors
The repeating structure of a unit cell creates peaks in reciprocal space. In particular, we observe maxima (constructive interference) when:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{q} \cdot \mathbf{a} & = 2 \pi h \\ \mathbf{q} \cdot \mathbf{b} & = 2 \pi k \\ \mathbf{q} \cdot \mathbf{c} & = 2 \pi l \\ \end{alignat} }
Where , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} , and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l} are integers. We define reciprocal-space vectors:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{u} & = \frac{\mathbf{b}\times\mathbf{c}}{\mathbf{a}\cdot (\mathbf{b}\times\mathbf{c}) } = \frac{1}{V} \mathbf{b}\times\mathbf{c} \\ \mathbf{v} & = \frac{\mathbf{c}\times\mathbf{a}}{\mathbf{a}\cdot (\mathbf{b}\times\mathbf{c}) } =\frac{1}{V} \mathbf{c}\times\mathbf{a} \\ \mathbf{w} & = \frac{\mathbf{a}\times\mathbf{b}}{\mathbf{a}\cdot (\mathbf{b}\times\mathbf{c}) } =\frac{1}{V} \mathbf{a}\times\mathbf{b} \\ \end{alignat} }
And we can then express the momentum transfer (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q}} ) in terms of these reciprocal vectors:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{q} & = (\mathbf{q}\cdot\mathbf{a})\mathbf{u} + (\mathbf{q}\cdot\mathbf{b})\mathbf{v} + (\mathbf{q}\cdot\mathbf{c})\mathbf{w} \end{alignat} }
Combining with the three Laue equations yields:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\ & = 2 \pi(h\mathbf{u} + k \mathbf{v} + l \mathbf{w}) \\ & = 2 \pi \mathbf{H}_{hkl} \end{alignat} }
Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{H}_{hkl}} is a vector that defines the position of Bragg reflection Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle hkl} for the reciprocal-lattice.
Examples
Cubic
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=\beta=\gamma=90^{\circ}} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V=abc} , and:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{a} & = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{b} & = \begin{bmatrix} 0 \\ b \\ 0 \end{bmatrix} \\ \mathbf{c} & = \begin{bmatrix} 0 \\ 0 \\ c \end{bmatrix} \\ \end{alignat} }
And in reciprocal-space:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{u} & =\frac{1}{V} \mathbf{b}\times\mathbf{c} & =\frac{1}{V} \begin{bmatrix} b c \\ 0 \\ 0 \end{bmatrix} & = \begin{bmatrix} \frac{1}{a} \\ 0 \\ 0 \end{bmatrix}\\ \mathbf{v} & =\frac{1}{V} \mathbf{c}\times\mathbf{a} & =\frac{1}{V} \begin{bmatrix} 0 \\ a c \\ 0 \end{bmatrix} & = \begin{bmatrix} 0 \\ \frac{1}{b} \\ 0 \end{bmatrix}\\ \mathbf{w} & =\frac{1}{V} \mathbf{a}\times\mathbf{b} & =\frac{1}{V} \begin{bmatrix} 0 \\ 0 \\ a b \end{bmatrix} & = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{c} \end{bmatrix}\\ \end{alignat} }
So:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\ & = (2 \pi h)\begin{bmatrix} \frac{1}{a} \\ 0 \\ 0 \end{bmatrix} + (2 \pi k)\begin{bmatrix} 0 \\ \frac{1}{b} \\ 0 \end{bmatrix} + (2 \pi l)\begin{bmatrix} 0 \\ 0 \\ \frac{1}{c} \end{bmatrix} \\ & = \begin{bmatrix} \frac{2 \pi h}{a} \\ \frac{2 \pi k}{b} \\ \frac{2 \pi l}{c} \end{bmatrix} \end{alignat} }
And:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{hkl} = 2\pi \sqrt{ \left( \frac{h}{a} \right)^2 + \left( \frac{k}{b} \right)^2 + \left( \frac{l}{c} \right)^2 } }
Hexagonal
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=\beta=90^{\circ}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma=60^{\circ}} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V=\frac{\sqrt{3}}{2}abc} , and:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{a} & = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{b} & = \begin{bmatrix} \frac{1}{2}b \\ \frac{\sqrt{3}}{2} b \\ 0 \end{bmatrix} \\ \mathbf{c} & = \begin{bmatrix} 0 \\ 0 \\ c \end{bmatrix} \\ \end{alignat} }
And in reciprocal-space:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{u} & =\frac{1}{V} \mathbf{b}\times\mathbf{c} & =\frac{1}{V} \begin{bmatrix} \frac{\sqrt{3}}{2} b c \\ -\frac{1}{2} b c \\ 0 \end{bmatrix} & = \begin{bmatrix} \frac{1}{a} \\ \frac{1}{\sqrt{3}a} \\ 0 \end{bmatrix}\\ \mathbf{v} & =\frac{1}{V} \mathbf{c}\times\mathbf{a} & =\frac{1}{V} \begin{bmatrix} 0 \\ a c \\ 0 \end{bmatrix} & = \begin{bmatrix} 0 \\ \frac{2}{\sqrt{3}b} \\ 0 \end{bmatrix}\\ \mathbf{w} & =\frac{1}{V} \mathbf{a}\times\mathbf{b} & =\frac{1}{V} \begin{bmatrix} 0 \\ 0 \\ \frac{\sqrt{3}}{2} a b \end{bmatrix} & = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{c} \end{bmatrix}\\ \end{alignat} }
So:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\ & = (2 \pi h)\begin{bmatrix} \frac{1}{a} \\ \frac{1}{\sqrt{3}a} \\ 0 \end{bmatrix} + (2 \pi k)\begin{bmatrix} 0 \\ \frac{2}{\sqrt{3}b} \\ 0 \end{bmatrix} + (2 \pi l)\begin{bmatrix} 0 \\ 0 \\ \frac{1}{c} \end{bmatrix} \\ & = \begin{bmatrix} \frac{2 \pi h}{a} \\ \frac{2 \pi h}{\sqrt{3}a} + \frac{4 \pi k}{\sqrt{3}b} \\ \frac{2 \pi l}{c} \end{bmatrix} \\ & = \begin{bmatrix} \frac{2 \pi h}{a} \\ \frac{2 \pi (h + 2 k)}{\sqrt{3}a} \\ \frac{2 \pi l}{c} \end{bmatrix} \end{alignat} }
See Also
- Lattices
- K. N. Trueblood, H.-B. Bürgi, H. Burzlaff, J. D. Dunitz, C. M. Gramaccioli, H. H. Schulz, U. Shmueli and S. C. Abrahams Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature Acta Cryst 1996, A52, 770-781. doi: 10.1107/S0108767396005697