Talk:Lattices
To Do
Add structures reported in:
B.M. Mladek, B.M.; Mladek, B.M.; Fornleitner, J.; Martinez-Veracoechea, F.C.; Dawid, A.; Frenkel, D. Procedure to construct a multi-scale coarse-grained model of DNA-coated colloids from experimental Soft Matter 2013, 9, 7342-7355 doi: 10.1039/C3SM50701G
Extra math
A given real-space lattice will have dimensions:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(a,b,c\right)}
Such that the position of any particular cell within the infinite lattice is:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r}_{hkl} = \left\langle ah,bk,cl\right\rangle }
Where h, k, and l are indices. The corresponding inverse-space lattice would be:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q}_{hkl} = 2\pi \left\langle \frac{h}{a} , \frac{k}{b} , \frac{l}{c} \right\rangle }
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{hkl} = 2\pi \sqrt{ \left( \frac{h}{a} \right)^2 + \left( \frac{k}{b} \right)^2 + \left( \frac{l}{c} \right)^2 } }
In the case where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=b=c} :
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q_{hkl} & = 2\pi \sqrt{ \left( \frac{h}{a} \right)^2 + \left( \frac{k}{a} \right)^2 + \left( \frac{l}{a} \right)^2 } \\ & = \frac{2\pi}{a} \sqrt{ h^2 + k^2 + l^2 } \end{alignat} }