Debye-Waller factor

From GISAXS
Revision as of 20:32, 3 June 2014 by 68.194.136.6 (talk) (Created page with "The '''Debye-Waller factor''' is a term (in scattering equations) which accounts for how thermal fluctuations extinguish scattering intensity (especially high-''q'' peaks). Th...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The Debye-Waller factor is a term (in scattering equations) which accounts for how thermal fluctuations extinguish scattering intensity (especially high-q peaks). This scattering intensity then appears as diffuse scattering. Conceptually, thermal fluctuations create disorder, because the atoms/particles oscillate about their equilibrium positions and thus the lattice is never (instantaneously) perfect.

Mathematical form

For a lattice-size a, the constituent entities (atoms, particles, etc.) will oscillate about their equilibrium positions with an rms width Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_a} , attenuating structural peaks like:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} G(q) & = e^{-\langle u^2 \rangle q^2} \\ & = e^{-\sigma_{\mathrm{rms}}^2q^2} \\ & = e^{-\sigma_a^2a^2q^2} \end{alignat} }

Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{\mathrm{rms}} \equiv \sqrt{ \langle u^2 \rangle }} is the root-mean-square displacement of the lattice-spacing a (such that the spacing at time t is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a+u(t)} ), and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_a \equiv \sigma_{\mathrm{rms}}/a} is the relative displacement.


See Also