Talk:Scattering

From GISAXS
Revision as of 18:28, 29 December 2015 by KevinYager (talk | contribs) (Check)
Jump to: navigation, search

TSAXS 3D

The q-vector in fact has three components:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q} = \begin{bmatrix} q_x & q_y & q_z \end{bmatrix} }

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle (x,z) } . The scattering angles are then:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \theta_f & = \arctan\left[ \frac{x}{d} \right] \\ \alpha_f ^\prime & = \arctan\left[ \frac{z}{d} \right] \\ \alpha_f & = \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \end{alignat} }

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} 2 \theta_s = \Theta & = \arctan\left[ \frac{ \sqrt{x^2 + z^2}}{d} \right] \\ & = \arctan\left[ \frac{ \sqrt{(d \tan \theta_f)^2 + (d \tan \alpha_f^\prime )^2}}{d} \right] \\ & = \arctan\left[ \sqrt{\tan^2 \theta_f + \tan^2 \alpha_f^\prime } \right] \\ & = \arctan\left[ \sqrt{\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } } \right] \\ \end{alignat} }

The momentum transfer components are:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f \\ q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f - 1 \right ) \\ q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f \end{alignat} }

Check

As a check of these results, consider:

Where we used:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \sin( \arctan[u]) & = \frac{u}{\sqrt{1+u^2}} \\ \sin \theta_f & = \sin( \arctan [x/d] ) \\ & = \frac{x/d}{\sqrt{1 + (x/d)^2}} \\ & = \frac{x}{\sqrt{d^2+x^2}} \end{alignat} }

And, we further note that:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\ \cos \theta_f & = \frac{1}{\sqrt{1 + (x/d)^2}} \\ & = \frac{d^2}{\sqrt{d^2+x^2}} \end{alignat} }

Continuing: