Lattice:AlB2
AlB2 is a hexagonal lattice, with two distinct kinds of particles.
Contents
Symmetry
- Crystal Family: Hexagonal
- Pearson symbol: hP3
- Space Group: P6/mmm, No. 191
- Particles per unit cell: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=3}
- 'inner' particles: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
- 'corner' particles: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
- Volume of unit cell: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_d=a^2 c \sin(60^{\circ}) = a^2 c \frac{\sqrt{3}}{2}}
- Dimensionality: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=3}
Particle Positions (basis vectors)
There are 10 positions, with 3 particles in the unit cell
Particle A: corners
These are the corners of the hexagonal frame. There are 8 corner positions, which contributes a total of 1 particle.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8 \, \mathrm{corners}: \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} = 1}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(0,0,0\right), \, (0,0,1), \, (0,1,0), \, (1,0,0), \, (0,1,1), \, (1,0,1), \, (1,1,0), \, (1,1,1)}
Particle B: inner
These are the two inner particles.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \, \mathrm{inner} \, \times \, 1 = 2}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{1}{3},\frac{1}{3},\frac{1}{2} \right), \, \left(\frac{2}{3},\frac{2}{3},\frac{1}{2} \right)}
Particle Positions (Cartesian coordinates)
Particle A: corners
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(0,0,0\right), \, (0,0,c), \, \left(\frac{b}{2},\frac{\sqrt{3}b}{2},0 \right), \, (a,0,0), \, \left(\frac{b}{2},\frac{\sqrt{3}b}{2},c \right), \, (a,0,c), \, \left(a+\frac{b}{2},\frac{\sqrt{3}b}{2},0 \right), \, \left(a+\frac{b}{2},\frac{\sqrt{3}b}{2},c \right)}
Particle B: inner
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{a}{3}+\frac{b}{6},\frac{\sqrt{3}b}{6},\frac{c}{2} \right), \, \left(\frac{2a}{3}+\frac{b}{3},\frac{\sqrt{3}b}{3},\frac{c}{2} \right)}
Examples
Elemental
- High-pressure structure of Zr (c/a ~ 0.62)
Atomic
- Aluminium diboride (AlB2) (a = b = 3.0062 Å, c = 3.2548, c/a = 1.0827)
- TiZr ?
Nano
- 4.3 nm and 2.3 nm FexPt1−x nanoparticles
- Sra, A.K.; Ewers, T.D.; Xu, Q.; Zandbergen, H.; Schaak, R.E. One-pot synthesis of bi-disperse FePt nanoparticles and size-selective self-assembly into AB2, AB5, and AB13 superlattices Chem. Commun. 2006, 750-752 doi: 10.1039/B515673D
- 15 nm Fe3O4 and 6 nm FePt nanoparticles assembled at liquid interface
- Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface Nature 2010 466, 474–477 doi: 10.1038/nature09188
- Korgel, B.A. Nanocrystal superlattices: Assembly at liquid interfaces, Nature Materials 2010, 9, 701-703 doi: 10.1038/nmat2846