Check of Total Magnitude #1: Doesn't work
![{\displaystyle {\begin{alignedat}{2}\left({\frac {q}{k}}\right)^{2}d^{\prime 2}&={\begin{alignedat}{2}[&\left(x\cos \phi _{g}-\sin \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)^{2}\\&+\left(x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-d^{\prime }\right)^{2}\\&+\left(d\sin \theta _{g}+z\cos \theta _{g}\right)^{2}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}\cos ^{2}\phi _{g}-x\cos \phi _{g}\sin \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+\sin ^{2}\phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})^{2}\\&+x^{2}\sin ^{2}\phi _{g}+x\sin \phi _{g}\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-d^{\prime }x\sin \phi _{g}\\&+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})x\sin \phi _{g}+\cos ^{2}\phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})^{2}-d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\\&-d^{\prime }x\sin \phi _{g}-d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2d\sin \theta _{g}z\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}\cos ^{2}\phi _{g}-x\cos \phi _{g}\sin \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+\sin ^{2}\phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})^{2}\\&+x^{2}\sin ^{2}\phi _{g}+2x\sin \phi _{g}\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-2d^{\prime }x\sin \phi _{g}\\&+\cos ^{2}\phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})^{2}-2d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2d\sin \theta _{g}z\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}-x\sin \phi _{g}\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+(d\cos \theta _{g}-z\sin \theta _{g})^{2}\\&+2x\sin \phi _{g}\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-2d^{\prime }x\sin \phi _{g}\\&-2d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}+d^{2}\cos ^{2}\theta _{g}-2dz\cos \theta _{g}\sin \theta _{g}+z^{2}\sin ^{2}\theta _{g}\\&+(-x\sin \phi _{g}\cos \phi _{g}+2x\sin \phi _{g}\cos \phi _{g}-2d^{\prime }\cos \phi _{g})(d\cos \theta _{g}-z\sin \theta _{g})\\&-2d^{\prime }x\sin \phi _{g}\\&+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&d^{\prime 2}+x^{2}+d^{2}+z^{2}-2dz\cos \theta _{g}\sin \theta _{g}\\&+(x\sin \phi _{g}\cos \phi _{g}-2d^{\prime }\cos \phi _{g})(d\cos \theta _{g}-z\sin \theta _{g})\\&+2dz\sin \theta _{g}\cos \theta _{g}-2d^{\prime }x\sin \phi _{g}]\end{alignedat}}\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}+(x\sin \phi _{g}\cos \phi _{g}-2d^{\prime }\cos \phi _{g})(d\cos \theta _{g}-z\sin \theta _{g})\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}+(x\sin \phi _{g}-2d^{\prime })\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\\&=?\\&=?\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}+2d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\\&=2d^{\prime }\left(d^{\prime }-x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)\\\left({\frac {q}{k}}\right)^{2}&=2\left(1-{\frac {x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})}{d^{\prime }}}\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d68c5043400ca1ea8111f1b9af10b554eaa6be9)
Check of Total Magnitude #2: Doesn't work
We define:

And calculate:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q^2 & = [ (q_x)^2 + (q_y)^2 + (q_z)^2 ] \\ \left ( \frac{q}{k} \right )^2 d^{\prime 2} & = \begin{alignat}{2} [ & \left( x \cos \phi_g -\sin \phi_g ( d \cos \theta_g - z \sin \theta_g ) \right)^2 \\ & + \left( x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) - d^{\prime} \right)^2 \\ & + \left( d \sin \theta_g + z \cos \theta_g \right)^2 ] \end{alignat} \\ & = \begin{alignat}{2} [ & \left( x \cos \phi_g -\sin \phi_g ( v_{2y} ) \right)^2 \\ & + \left( x \sin \phi_g + \cos \phi_g ( v_{2y} ) - d^{\prime} \right)^2 \\ & + \left( d \sin \theta_g + z \cos \theta_g \right)^2 ] \end{alignat} \\ & = \begin{alignat}{2} [ & x^2 \cos^2 \phi_g - 2 x \cos \phi_g \sin \phi_g ( v_{2y} ) + \sin^2 \phi_g ( v_{2y} )^2 \\ & + x^2 \sin^2 \phi_g + x \sin \phi_g \cos \phi_g ( v_{2y} ) - d^{\prime} x \sin \phi_g \\ & + x \sin \phi_g \cos \phi_g ( v_{2y} ) + \cos^2 \phi_g ( v_{2y} )^2 - d^{\prime} \cos \phi_g ( v_{2y} ) \\ & - d^{\prime} x \sin \phi_g - d^{\prime} \cos \phi_g ( v_{2y} ) + d^{\prime 2} \\ & + d^2 \sin^2 \theta_g + 2 d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\ \end{alignat} }
Grouping and rearranging:
![{\displaystyle {\begin{alignedat}{2}\left({\frac {q}{k}}\right)^{2}d^{\prime 2}&={\begin{alignedat}{2}[&x^{2}+(v_{2y})^{2}\\&-2d^{\prime }x\sin \phi _{g}\\&-2d^{\prime }\cos \phi _{g}(v_{2y})\\&+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+2dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&d^{\prime 2}+x^{2}+(d^{2}\cos ^{2}\theta _{g}-2dz\cos \theta _{g}\sin \theta _{g}+z^{2}\sin ^{2}\theta _{g})\\&-2d^{\prime }x\sin \phi _{g}-2d^{\prime }\cos \phi _{g}(v_{2y})\\&+d^{2}\sin ^{2}\theta _{g}+2dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&={\begin{alignedat}{2}[&d^{\prime 2}+x^{2}+d^{2}+z^{2}\\&-2d^{\prime }x\sin \phi _{g}-2d^{\prime }\cos \phi _{g}(v_{2y})]\end{alignedat}}\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}-2d^{\prime }\cos \phi _{g}(v_{2y})\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}-2d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\\&=2d^{\prime }\left(d^{\prime }-x\sin \phi _{g}-\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)\\\left({\frac {q}{k}}\right)^{2}&=2\left(1-{\frac {x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})}{d^{\prime }}}\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/71c282927abe9fc87d449a305d287da3d84a3fb0)