Talk:Unit cell
Contents
[hide]Extra math expressions
A given real-space cubic lattice will have dimensions:
Such that the position of any particular cell within the infinite lattice is:
Where h, k, and l are indices. The corresponding inverse-space lattice would be:
In the case where :
Vectors
There are many equivalent ways to define/construct the Cartesian basis for the unit cell in real-space. The unit cell vectors can be written as:
According to this, the vectors can be written as:
which is mathematically equivalent.
According to:
- K. N. Trueblood, H.-B. Bürgi, H. Burzlaff, J. D. Dunitz, C. M. Gramaccioli, H. H. Schulz, U. Shmueli and S. C. Abrahams Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature Acta Cryst 1996, A52, 770-781. doi: 10.1107/S0108767396005697
The vectors are written as:
This is, again, an equivalent expression. The equivalence can be show by:
TBD: Reciprocal vector components
Calculate q_hkl generally
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | def q_hkl( self , h, k, l): """Determines the position in reciprocal space for the given reflection.""" # The 'unitcell' coordinate system assumes: # a-axis lies along x-axis # b-axis is in x-y plane # c-axis is vertical (or at a tilt, depending on beta) # Convert from (unitcell) Cartesian to (unitcell) fractional coordinates reduced_volume = sqrt( 1 - (cos( self .alpha)) * * 2 - (cos( self .beta)) * * 2 - (cos( self .gamma)) * * 2 + 2 * cos( self .alpha) * cos( self .beta) * cos( self .gamma) ) #volume = reduced_volume*self.lattice_spacing_a*self.lattice_spacing_b*self.lattice_spacing_c a = ( self .lattice_spacing_a , \ 0.0 , \ 0.0 ) b = ( self .lattice_spacing_b * cos( self .gamma) , \ self .lattice_spacing_b * sin( self .gamma) , \ 0.0 ) c = ( self .lattice_spacing_c * cos( self .beta) , \ self .lattice_spacing_c * ( cos( self .alpha) - cos( self .beta) * cos( self .gamma) ) / ( sin( self .gamma) ) , \ self .lattice_spacing_c * reduced_volume / ( sin( self .gamma) ) ) # Compute (unitcell) reciprocal-space lattice vectors volume = np.dot( a, np.cross(b,c) ) u = np.cross( b, c ) / volume # Along qx v = np.cross( c, a ) / volume # Along qy w = np.cross( a, b ) / volume # Along qz qhkl_vector = 2 * pi * ( h * u + k * v + l * w ) qhkl = sqrt( qhkl_vector[ 0 ] * * 2 + qhkl_vector[ 1 ] * * 2 + qhkl_vector[ 2 ] * * 2 ) return (qhkl, qhkl_vector) def q_hkl_length( self , h, k, l): qhkl, qhkl_vector = self .q_hkl(h,k,l) #qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 ) return qhkl |