AI tricks
Contents
Prompt Engineering
- 2025-03: Prompting Science Report 1: Prompt Engineering is Complicated and Contingent
- 2024-06: The Prompt Report: A Systematic Survey of Prompting Techniques
In-Context Learning
- 2020-05: Language Models are Few-Shot Learners
- 2025-03: Learning to Search Effective Example Sequences for In-Context Learning
Chain of Thought (CoT)
"Let's think step-by-step"
Multi-step
Tool-use, feedback, agentic
Retrieval-Augmented Generation (RAG)
Input/Output Formats
- 2024-08: LLMs Are Biased Towards Output Formats! Systematically Evaluating and Mitigating Output Format Bias of LLMs
- 2024-11: Does Prompt Formatting Have Any Impact on LLM Performance?
Position Bias
- 2023-07: Lost in the Middle: How Language Models Use Long Contexts
- Test models:
- 2024-07: Eliminating Position Bias of Language Models: A Mechanistic Approach