ScatterSim:Examples:002Lattice
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | # The next step is creating a lattice from ScatterSim.NanoObjects import SphereNanoObject, PolydisperseNanoObject # We'll import a few lattices, cubic, FCC, BCC and Diamond from ScatterSim.LatticeObjects import SimpleCubic, FCCLattice, BCCLattice, DiamondTwoParticleLattice # import the peak shape for the peaks, tunable from ScatterSim.PeakShape import PeakShape import numpy as np import matplotlib.pyplot as plt # Let's use our polydisperse sphere nanoobject since it's more realistic # In general though, you'll want to start with simpler objects to reduce computation time # but this one should be okay... pargs_polysphere = dict (radius = 1 , sigma_R = . 04 ) polysphere = PolydisperseNanoObject(SphereNanoObject, pargs_polysphere, argname = 'radius' , argstdname = 'sigma_R' ) # The peak shape # delta is sigma of a Gaussian, and nu is FWHM of a Lorentzian # Generally, you'll want to keep one zero and vary the other (to get a Gaussian or Lorentzian) # but when finalizing a fit, you may want to play with intermediate values peak = PeakShape(delta = 0.03 , nu = 0.01 ) # now define your lattices # lattices, to first order are just defined by 6 parameters: # lattice_spacing_a, lattice_spacing_b and lattice_spacing_c (the unit vector spacings) # alpha, beta, gamma (the angles the unit vectors make with the axes) # We'll deal with simple lattices, so all unit vectors are aligned with x, y and z axes, and same length lattice_spacing = 10. # 10 times radius (1 nm) sigma_D = . 06 # add a Debye-Waller factor lat_sc = SimpleCubic([polysphere], lattice_spacing_a = lattice_spacing, sigma_D = sigma_D) lat_fcc = FCCLattice([polysphere], lattice_spacing_a = lattice_spacing, sigma_D = sigma_D) lat_bcc = BCCLattice([polysphere], lattice_spacing_a = lattice_spacing, sigma_D = sigma_D) lat_diamond = DiamondTwoParticleLattice([polysphere], lattice_spacing_a = lattice_spacing, sigma_D = sigma_D) q = np.linspace(. 4 , 4 , 1000 ) # Now compute the intensity, it will take some time... Z0_sc = lat_sc.intensity(q, peak) Pq_sc = lat_sc.form_factor_squared_isotropic(q) c_sc = . 1 # note Gq is same for all three here (just depends on sigma_D, it's an exponential decay...) Gq_sc = lat_sc.G_q(q) Sq_sc = c_sc * Z0_sc / Pq_sc * Gq_sc + ( 1 - Gq_sc) print ( "Finished calculating Simple Cubic" ) Z0_fcc = lat_fcc.intensity(q, peak) Pq_fcc = lat_fcc.form_factor_squared_isotropic(q) Gq_fcc = lat_fcc.G_q(q) Sq_fcc = c_sc * Z0_fcc / Pq_fcc * Gq_fcc + ( 1 - Gq_fcc) print ( "Finished calculating Face Centered Cubic" ) Z0_bcc = lat_bcc.intensity(q, peak) Pq_bcc = lat_bcc.form_factor_squared_isotropic(q) Gq_bcc = lat_bcc.G_q(q) Sq_bcc = c_sc * Z0_bcc / Pq_bcc * Gq_bcc + ( 1 - Gq_bcc) print ( "Finished calculating Body Centered Cubic" ) Z0_diamond = lat_diamond.intensity(q, peak) Pq_diamond = lat_diamond.form_factor_squared_isotropic(q) Gq_diamond = lat_diamond.G_q(q) Sq_diamond = c_sc * Z0_diamond / Pq_diamond * Gq_diamond + ( 1 - Gq_diamond) print ( "Finished calculating Diamond" ) plt.figure( 0 , figsize = ( 10 , 8 ));plt.clf() plt.subplot( 2 , 2 , 1 ) plt.title( "Simple Cubic Structure Factor" ) plt.plot(q, Sq_sc) plt.subplot( 2 , 2 , 2 ) plt.title( "Face Centered Cubic Structure Factor" ) plt.plot(q, Sq_fcc) plt.subplot( 2 , 2 , 3 ) plt.title( "Body Centered Cubic Structure Factor" ) plt.plot(q, Sq_bcc) plt.subplot( 2 , 2 , 4 ) plt.title( "Diamond Structure Factor" ) plt.plot(q, Sq_diamond) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # Same, but loglog plot (sometimes easier to see) plt.figure( 1 , figsize = ( 10 , 8 ));plt.clf() plt.subplot( 2 , 2 , 1 ) plt.title( "Simple Cubic Structure Factor" ) plt.loglog(q, Sq_sc) plt.subplot( 2 , 2 , 2 ) plt.title( "Face Centered Cubic Structure Factor" ) plt.loglog(q, Sq_fcc) plt.subplot( 2 , 2 , 3 ) plt.title( "Body Centered Cubic Structure Factor" ) plt.loglog(q, Sq_bcc) plt.subplot( 2 , 2 , 4 ) plt.title( "Diamond Structure Factor" ) plt.loglog(q, Sq_diamond) |