|
|
Line 33: |
Line 33: |
| q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ | | q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ |
| & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ | | & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ |
| + | \frac{q}{k} & = \sqrt{ (\sin \theta_f)^2 (\cos \alpha_f)^2 \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 } \\ |
| + | & = \sqrt{ \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left(\sin \alpha_f \right)^2 } \\ |
| & = ? \\ | | & = ? \\ |
| & = ? \\ | | & = ? \\ |
− | & = \frac{ [ \frac{\sqrt{x^2 + z^2}}{d} \right ] } {\sqrt{1 + [ \frac{\sqrt{x^2 + z^2}}{d} \right ]^2 }} \\ | + | & = ? \\ |
| + | & = ? \\ |
| + | & = ? \\ |
| + | & = ? \\ |
| + | & = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\ |
| + | & = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\ |
| & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ | | & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ |
| & = \sin \left( 2 \theta_s \right) | | & = \sin \left( 2 \theta_s \right) |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 17:43, 29 December 2015
The q-vector in fact has three components:
Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:
The momentum transfer components are:
And, of course: