Difference between revisions of "Talk:Scattering"

From GISAXS
Jump to: navigation, search
(Check)
(TSAXS 3D)
Line 25: Line 25:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right) \\
+
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
     & = \frac{2 \pi}{\lambda} \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\
+
     & = \frac{4 \pi}{\lambda} \sin \left( \frac{1}{2} \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right)
    & = \frac{2 \pi}{\lambda} \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\
 
    & = \frac{2 \pi}{\lambda}\sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} }
 
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
 +
 +
Given that:
 +
::<math>
 +
\begin{alignat}{2}
 +
\cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\
 +
\cos( 2 \theta_s ) & = \frac{1}{\sqrt{1 + (x/d)^2}} \\
 +
    & = \frac{d^2}{\sqrt{d^2+x^2}}
 +
\end{alignat}
 +
</math>
 +
We can also write:
 +
:<math>
 +
\begin{alignat}{2}
 +
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 +
    & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} }
 +
\end{alignat}
 +
</math>
 +
 
The [[momentum transfer]] components are:
 
The [[momentum transfer]] components are:
 
:<math>
 
:<math>

Revision as of 10:18, 30 December 2015

TSAXS 3D

The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:

The total momentum transfer is:

Given that:

We can also write:

The momentum transfer components are:

In-plane only

If (and ), then , , and:

Check

As a check of these results, consider:

Where we used:

And, we further note that:

cont

Continuing: