Difference between revisions of "Talk:Scattering"

From GISAXS
Jump to: navigation, search
(TSAXS 3D)
(TSAXS 3D)
Line 12: Line 12:
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The alternate angle, <math>\scriptstyle \alpha_f </math>, is the elevation angle in the plane defined by <math>\scriptstyle \theta_f </math>. Also note that the full scattering angle is:
+
where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The alternate angle, <math>\scriptstyle \alpha_f </math>, is the elevation angle in the plane defined by <math>\scriptstyle \theta_f </math>.
 
+
====Total scattering===
 +
The full scattering angle is:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
Line 43: Line 44:
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
 
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) }
+
     & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) }
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
 +
Where we take for granted that ''q'' must be positive.
  
 +
====In-plane only====
 +
If <math>\scriptstyle \alpha_f = 0 </math> (and <math>\scriptstyle \alpha_f ^{\prime} = 0</math>), then <math>\scriptstyle q_z = 0 </math>, <math>\scriptstyle 2 \theta_s = \theta_f </math>, and:
 +
:<math>
 +
q = k \sin \theta_f
 +
</math>
 +
 +
====Components====
 
The [[momentum transfer]] components are:
 
The [[momentum transfer]] components are:
 
:<math>
 
:<math>
Line 54: Line 63:
 
q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f  
 
q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f  
 
\end{alignat}
 
\end{alignat}
</math>
 
 
====In-plane only====
 
If <math>\scriptstyle \alpha_f = 0 </math> (and <math>\scriptstyle \alpha_f ^{\prime} = 0</math>), then <math>\scriptstyle q_z = 0 </math>, <math>\scriptstyle 2 \theta_s = \theta_f </math>, and:
 
:<math>
 
q = k \sin \theta_f
 
 
</math>
 
</math>
  

Revision as of 10:30, 30 December 2015

TSAXS 3D

The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .

=Total scattering

The full scattering angle is:

The total momentum transfer is:

Given that:

We can also write:

Where we take for granted that q must be positive.

In-plane only

If (and ), then , , and:

Components

The momentum transfer components are:

Check

As a check of these results, consider:

Where we used:

And, we further note that:

cont

Continuing: