Difference between revisions of "Example:Particle spacing from peak position"

From GISAXS
Jump to: navigation, search
(BCC 110)
Line 17: Line 17:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
d_{hkl}  
+
d_{110}  
 
   & = \frac{a}{\sqrt{ 1^2 + 1^2 + 0^2 }} \\
 
   & = \frac{a}{\sqrt{ 1^2 + 1^2 + 0^2 }} \\
 
   & = \frac{a}{\sqrt{ 2 }}
 
   & = \frac{a}{\sqrt{ 2 }}
 +
\end{alignat}
 +
</math>
 +
[[Lattice:BCC|Note that for BCC]], the particle-particle distance is given by:
 +
:<math>d_{nn}=\frac{ \sqrt{3}a }{2}</math>
 +
So we expect:
 +
:<math>
 +
\begin{alignat}{2}
 +
d_{nn}
 +
  & = \frac{ \sqrt{3}a }{2} \\
 +
  & = \frac{ \sqrt{3} d_{110} \sqrt{2} }{2} \\
 +
  & = \frac{ \sqrt{6} d_{110}  }{2} \\
 +
  & = \frac{ \sqrt{6} (2 \pi / q_{110}  }{2} \\
 +
  & = \frac{ \pi \sqrt{6}  }{q_{110}} \\
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 13:31, 2 September 2014

Consider the case of trying to measure the particle-particle spacing from the q-value of a particular peak. The interpretation of the q value of course depends upon the packing of the particles; i.e. the unit cell. Consider a cubic unit cell (SC, BCC, FCC). Note that in general:

Since , and since , the realspace spacing of planes is:

BCC 110

Note that for BCC, the particle-particle distance is given by:

So we expect: