Difference between revisions of "Example:Particle spacing from peak position"

From GISAXS
Jump to: navigation, search
(BCC 110)
(BCC 110)
Line 23: Line 23:
 
</math>
 
</math>
 
[[Lattice:BCC|Note that for BCC]], the particle-particle distance is given by:
 
[[Lattice:BCC|Note that for BCC]], the particle-particle distance is given by:
:<math>d_{nn}=\frac{ \sqrt{3}a }{2}</math>
+
:<math>d_{nn} = \sqrt{3}a /2</math>
 
So we expect:
 
So we expect:
 
:<math>
 
:<math>
Line 31: Line 31:
 
   & = \frac{ \sqrt{3} d_{110} \sqrt{2} }{2} \\
 
   & = \frac{ \sqrt{3} d_{110} \sqrt{2} }{2} \\
 
   & = \frac{ \sqrt{6} d_{110}  }{2} \\
 
   & = \frac{ \sqrt{6} d_{110}  }{2} \\
   & = \frac{ \sqrt{6} (2 \pi / q_{110} }{2} \\
+
   & = \frac{ \sqrt{6} (2 \pi / q_{110} ) }{2} \\
 
   & = \frac{ \pi \sqrt{6}  }{q_{110}} \\
 
   & = \frac{ \pi \sqrt{6}  }{q_{110}} \\
 +
\end{alignat}
 +
</math>
 +
Of course, we could also have written:
 +
:<math>
 +
\begin{alignat}{2}
 +
d_{110}
 +
  & = \frac{a}{\sqrt{ 2 }} \\
 +
  & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\
 +
  & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\
 +
\end{alignat}
 +
</math>
 +
 +
===FCC 111===
 +
:<math>
 +
\begin{alignat}{2}
 +
d_{111}
 +
  & = \frac{a}{\sqrt{ 1^2 + 1^2 + 1^2 }} \\
 +
  & = \frac{a}{\sqrt{ 3 }}
 +
\end{alignat}
 +
</math>
 +
And:
 +
:<math>d_{nn}=\sqrt{2}a/2</math>
 +
So:
 +
:<math>
 +
\begin{alignat}{2}
 +
d_{nn}
 +
  & = \frac{ \sqrt{2}a }{2} \\
 +
  & = \frac{ \sqrt{2} d_{111} \sqrt{3} }{2} \\
 +
  & = \frac{ \sqrt{6} d_{111} }{2} \\
 +
  & = \frac{ \pi \sqrt{6} }{q_{111}} \\
 +
\end{alignat}
 +
</math>
 +
Or:
 +
\begin{alignat}{2}
 +
d_{110}
 +
  & = \frac{a}{\sqrt{ 2 }} \\
 +
  & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\
 +
  & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 13:36, 2 September 2014

Consider the case of trying to measure the particle-particle spacing from the q-value of a particular peak. The interpretation of the q value of course depends upon the packing of the particles; i.e. the unit cell. Consider a cubic unit cell (SC, BCC, FCC). Note that in general:

Since , and since , the realspace spacing of planes is:

BCC 110

Note that for BCC, the particle-particle distance is given by:

So we expect:

Of course, we could also have written:

FCC 111

And:

So:

Or: \begin{alignat}{2} d_{110}

 & = \frac{a}{\sqrt{ 2 }} \\
 & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\
 & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\

\end{alignat} </math>