Difference between revisions of "Talk:Scattering"

From GISAXS
Jump to: navigation, search
(Created page with "===TSAXS 3d=== The ''q''-vector in fact has three components: :<math> \mathbf{q} = \begin{bmatrix} q_x & q_y & q_z \end{bmatrix} </math> Consider that the x-ray beam p...")
 
(TSAXS 3d)
Line 8: Line 8:
 
\begin{alignat}{2}
 
\begin{alignat}{2}
 
\theta_f & = \arctan( x/d ) \\
 
\theta_f & = \arctan( x/d ) \\
\alpha_f & = \arctan( z/d )
+
\alpha_f ^\prime & = \arctan( z/d )
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f</math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The [[momentum transfer]] components are:
+
where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The [[momentum transfer]] components are:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f \\
+
q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f^\prime \\
q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f - 1 \right ) \\
+
q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f^\prime - 1 \right ) \\
q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f  
+
q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f^\prime \cos \theta_f
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 16:48, 29 December 2015

TSAXS 3d

The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The momentum transfer components are:

And, of course: