Difference between revisions of "Talk:Scattering"
KevinYager (talk | contribs) (→TSAXS 3d) |
KevinYager (talk | contribs) (→TSAXS 3d) |
||
Line 1: | Line 1: | ||
− | ===[[TSAXS]] | + | ===[[TSAXS]] 3D=== |
The ''q''-vector in fact has three components: | The ''q''-vector in fact has three components: | ||
:<math> | :<math> | ||
Line 7: | Line 7: | ||
:<math> | :<math> | ||
\begin{alignat}{2} | \begin{alignat}{2} | ||
− | \theta_f & = \arctan\left | + | \theta_f & = \arctan\left[ \frac{x}{d} \right] \\ |
− | \alpha_f ^\prime & = \arctan\left | + | \alpha_f ^\prime & = \arctan\left[ \frac{z}{d} \right] \\ |
− | \alpha_f & = \arctan \left | + | \alpha_f & = \arctan \left[ \frac{z }{d / \cos \theta_f} \right] |
+ | \end{alignat} | ||
+ | </math> | ||
+ | where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The alternate angle, <math>\scriptstyle \alpha_f </math>, is the elevation angle in the plane defined by <math>\scriptstyle \theta_f </math>. Also note that the full scattering angle is: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | 2 \theta_s = \Theta & = \arctan\left[ \frac{ \sqrt{x^2 + z^2}}{d} \right] | ||
\end{alignat} | \end{alignat} | ||
</math> | </math> | ||
− | |||
The [[momentum transfer]] components are: | The [[momentum transfer]] components are: | ||
Line 22: | Line 27: | ||
\end{alignat} | \end{alignat} | ||
</math> | </math> | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
And, of course: | And, of course: | ||
:<math> | :<math> | ||
\begin{alignat}{2} | \begin{alignat}{2} | ||
− | q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } | + | q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ |
+ | & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ | ||
+ | & = ? \\ | ||
+ | & = ? \\ | ||
+ | & = \frac{ [ \frac{\sqrt{x^2 + z^2}}{d} \right ] } {\sqrt{1 + [ \frac{\sqrt{x^2 + z^2}}{d} \right ]^2 }} \\ | ||
+ | & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ | ||
+ | & = \sin \left( 2 \theta_s \right) | ||
\end{alignat} | \end{alignat} | ||
</math> | </math> |
Revision as of 17:33, 29 December 2015
TSAXS 3D
The q-vector in fact has three components:
Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:
The momentum transfer components are:
And, of course:
- Failed to parse (unknown function "\begin{alignat}"): {\displaystyle \begin{alignat}{2} q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ & = ? \\ & = ? \\ & = \frac{ [ \frac{\sqrt{x^2 + z^2}}{d} \right ] } {\sqrt{1 + [ \frac{\sqrt{x^2 + z^2}}{d} \right ]^2 }} \\ & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ & = \sin \left( 2 \theta_s \right) \end{alignat} }