Difference between revisions of "Talk:Scattering"

From GISAXS
Jump to: navigation, search
(TSAXS 3d)
(TSAXS 3d)
Line 1: Line 1:
===[[TSAXS]] 3d===
+
===[[TSAXS]] 3D===
 
The ''q''-vector in fact has three components:
 
The ''q''-vector in fact has three components:
 
:<math>
 
:<math>
Line 7: Line 7:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
\theta_f & = \arctan\left( \frac{x}{d} \right) \\
+
\theta_f & = \arctan\left[ \frac{x}{d} \right] \\
\alpha_f ^\prime & = \arctan\left( \frac{z}{d} \right) \\
+
\alpha_f ^\prime & = \arctan\left[ \frac{z}{d} \right] \\
\alpha_f & = \arctan \left( \frac{z }{d / \cos \theta_f} \right)
+
\alpha_f & = \arctan \left[ \frac{z }{d / \cos \theta_f} \right]
 +
\end{alignat}
 +
</math>
 +
where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The alternate angle, <math>\scriptstyle \alpha_f </math>, is the elevation angle in the plane defined by <math>\scriptstyle \theta_f </math>. Also note that the full scattering angle is:
 +
:<math>
 +
\begin{alignat}{2}
 +
2 \theta_s  = \Theta & = \arctan\left[ \frac{ \sqrt{x^2 + z^2}}{d} \right]
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The alternate angle, <math>\scriptstyle \alpha_f </math>, is the elevation angle in the plane defined by <math>\scriptstyle \theta_f </math>.
 
  
 
The [[momentum transfer]] components are:
 
The [[momentum transfer]] components are:
Line 22: Line 27:
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
Or:
+
 
:<math>
 
\begin{alignat}{2}
 
q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f^\prime \\
 
q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f^\prime - 1 \right ) \\
 
q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f^\prime \cos \theta_f
 
\end{alignat}
 
</math>
 
 
And, of course:
 
And, of course:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 }
+
q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\
 +
& = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\
 +
& = ? \\
 +
& = ? \\
 +
& = \frac{ [ \frac{\sqrt{x^2 + z^2}}{d} \right ] } {\sqrt{1 + [ \frac{\sqrt{x^2 + z^2}}{d} \right ]^2 }} \\
 +
& = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\
 +
& = \sin \left( 2 \theta_s \right)
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 17:33, 29 December 2015

TSAXS 3D

The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:

The momentum transfer components are:

And, of course:

Failed to parse (unknown function "\begin{alignat}"): {\displaystyle \begin{alignat}{2} q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ & = ? \\ & = ? \\ & = \frac{ [ \frac{\sqrt{x^2 + z^2}}{d} \right ] } {\sqrt{1 + [ \frac{\sqrt{x^2 + z^2}}{d} \right ]^2 }} \\ & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ & = \sin \left( 2 \theta_s \right) \end{alignat} }