|
|
Line 32: |
Line 32: |
| </math> | | </math> |
| | | |
− | ====later==== | + | ====Check==== |
− | As a check: | + | As a check of these results, consider: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
Line 44: |
Line 44: |
| & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\ | | & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\ |
| & = \frac{x^2}{d^2+x^2} \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ | | & = \frac{x^2}{d^2+x^2} \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ |
− | & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ | + | & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } |
− | & = ? \\ | + | \end{alignat} |
− | & = ? \\ | + | </math> |
− | & = ? \\ | + | We note that: |
− | & = ? \\ | + | ::<math> |
− | & = ? \\ | + | \begin{alignat}{2} |
− | & = \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} \\ | + | \cos \theta_f & = \frac{1}{\sqrt{1 + (x/d)^2}} \\ |
| + | & = \frac{d^2}{\sqrt{d^2+x^2}} |
| + | \end{alignat} |
| + | </math> |
| + | |
| + | Continuing: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \frac{q^2}{k^2} |
| + | & = ? \\ |
| + | & = ? \\ |
| + | & = ? \\ |
| + | & = ? \\ |
| + | & = ? \\ |
| + | & = \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} \\ |
| \frac{q}{k} & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\ | | \frac{q}{k} & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\ |
− | & = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\ | + | & = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\ |
− | & = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\ | + | & = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\ |
− | & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ | + | & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ |
| q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right) | | q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right) |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 18:18, 29 December 2015
The q-vector in fact has three components:
Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:
The momentum transfer components are:
Check
As a check of these results, consider:
We note that:
Continuing: