|
|
Line 35: |
Line 35: |
| \cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\ | | \cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\ |
| \cos( 2 \theta_s ) & = \frac{1}{\sqrt{1 + (\sqrt{x^2+z^2}/d)^2}} \\ | | \cos( 2 \theta_s ) & = \frac{1}{\sqrt{1 + (\sqrt{x^2+z^2}/d)^2}} \\ |
− | & = \frac{d^2}{\sqrt{d^2+x^2+z^2}} | + | & = \frac{d}{\sqrt{d^2+x^2+z^2}} |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Line 42: |
Line 42: |
| \begin{alignat}{2} | | \begin{alignat}{2} |
| q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\ | | q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\ |
− | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } | + | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\ |
− | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } | + | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) } |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 10:25, 30 December 2015
The q-vector in fact has three components:
Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:
The total momentum transfer is:
Given that:
We can also write:
The momentum transfer components are:
In-plane only
If (and ), then , , and:
Check
As a check of these results, consider:
Where we used:
And, we further note that:
cont
Continuing: