|
|
Line 12: |
Line 12: |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
− | where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The alternate angle, <math>\scriptstyle \alpha_f </math>, is the elevation angle in the plane defined by <math>\scriptstyle \theta_f </math>. Also note that the full scattering angle is: | + | where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The alternate angle, <math>\scriptstyle \alpha_f </math>, is the elevation angle in the plane defined by <math>\scriptstyle \theta_f </math>. |
− | | + | ====Total scattering=== |
| + | The full scattering angle is: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
Line 43: |
Line 44: |
| q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\ | | q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\ |
| & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\ | | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\ |
− | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) } | + | & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) } |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
| + | Where we take for granted that ''q'' must be positive. |
| | | |
| + | ====In-plane only==== |
| + | If <math>\scriptstyle \alpha_f = 0 </math> (and <math>\scriptstyle \alpha_f ^{\prime} = 0</math>), then <math>\scriptstyle q_z = 0 </math>, <math>\scriptstyle 2 \theta_s = \theta_f </math>, and: |
| + | :<math> |
| + | q = k \sin \theta_f |
| + | </math> |
| + | |
| + | ====Components==== |
| The [[momentum transfer]] components are: | | The [[momentum transfer]] components are: |
| :<math> | | :<math> |
Line 54: |
Line 63: |
| q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f | | q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f |
| \end{alignat} | | \end{alignat} |
− | </math>
| |
− |
| |
− | ====In-plane only====
| |
− | If <math>\scriptstyle \alpha_f = 0 </math> (and <math>\scriptstyle \alpha_f ^{\prime} = 0</math>), then <math>\scriptstyle q_z = 0 </math>, <math>\scriptstyle 2 \theta_s = \theta_f </math>, and:
| |
− | :<math>
| |
− | q = k \sin \theta_f
| |
| </math> | | </math> |
| | | |
Revision as of 10:30, 30 December 2015
The q-vector in fact has three components:
Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .
=Total scattering
The full scattering angle is:
The total momentum transfer is:
Given that:
We can also write:
Where we take for granted that q must be positive.
In-plane only
If (and ), then , , and:
Components
The momentum transfer components are:
Check
As a check of these results, consider:
Where we used:
And, we further note that:
cont
Continuing: