Difference between revisions of "Example:Particle spacing from peak position"
KevinYager (talk | contribs) (→BCC 110) |
KevinYager (talk | contribs) (→BCC 110) |
||
Line 23: | Line 23: | ||
</math> | </math> | ||
[[Lattice:BCC|Note that for BCC]], the particle-particle distance is given by: | [[Lattice:BCC|Note that for BCC]], the particle-particle distance is given by: | ||
− | :<math>d_{nn}= | + | :<math>d_{nn} = \sqrt{3}a /2</math> |
So we expect: | So we expect: | ||
:<math> | :<math> | ||
Line 31: | Line 31: | ||
& = \frac{ \sqrt{3} d_{110} \sqrt{2} }{2} \\ | & = \frac{ \sqrt{3} d_{110} \sqrt{2} }{2} \\ | ||
& = \frac{ \sqrt{6} d_{110} }{2} \\ | & = \frac{ \sqrt{6} d_{110} }{2} \\ | ||
− | & = \frac{ \sqrt{6} (2 \pi / q_{110} | + | & = \frac{ \sqrt{6} (2 \pi / q_{110} ) }{2} \\ |
& = \frac{ \pi \sqrt{6} }{q_{110}} \\ | & = \frac{ \pi \sqrt{6} }{q_{110}} \\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | Of course, we could also have written: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | d_{110} | ||
+ | & = \frac{a}{\sqrt{ 2 }} \\ | ||
+ | & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\ | ||
+ | & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | |||
+ | ===FCC 111=== | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | d_{111} | ||
+ | & = \frac{a}{\sqrt{ 1^2 + 1^2 + 1^2 }} \\ | ||
+ | & = \frac{a}{\sqrt{ 3 }} | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | And: | ||
+ | :<math>d_{nn}=\sqrt{2}a/2</math> | ||
+ | So: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | d_{nn} | ||
+ | & = \frac{ \sqrt{2}a }{2} \\ | ||
+ | & = \frac{ \sqrt{2} d_{111} \sqrt{3} }{2} \\ | ||
+ | & = \frac{ \sqrt{6} d_{111} }{2} \\ | ||
+ | & = \frac{ \pi \sqrt{6} }{q_{111}} \\ | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | Or: | ||
+ | \begin{alignat}{2} | ||
+ | d_{110} | ||
+ | & = \frac{a}{\sqrt{ 2 }} \\ | ||
+ | & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\ | ||
+ | & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\ | ||
\end{alignat} | \end{alignat} | ||
</math> | </math> |
Revision as of 13:36, 2 September 2014
Consider the case of trying to measure the particle-particle spacing from the q-value of a particular peak. The interpretation of the q value of course depends upon the packing of the particles; i.e. the unit cell. Consider a cubic unit cell (SC, BCC, FCC). Note that in general:
Since , and since , the realspace spacing of planes is:
BCC 110
Note that for BCC, the particle-particle distance is given by:
So we expect:
Of course, we could also have written:
FCC 111
And:
So:
Or: \begin{alignat}{2} d_{110}
& = \frac{a}{\sqrt{ 2 }} \\ & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\ & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\
\end{alignat} </math>