Difference between revisions of "Talk:Scattering"

From GISAXS
Jump to: navigation, search
(TSAXS 3d)
(TSAXS 3D)
Line 33: Line 33:
 
q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\
 
q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\
 
& = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\
 
& = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\
 +
\frac{q}{k} & = \sqrt{ (\sin \theta_f)^2 (\cos \alpha_f)^2 \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 } \\
 +
& = \sqrt{ \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left(\sin \alpha_f \right)^2 } \\
 
& = ? \\
 
& = ? \\
 
& = ? \\
 
& = ? \\
& = \frac{ [ \frac{\sqrt{x^2 + z^2}}{d} \right ] } {\sqrt{1 + [ \frac{\sqrt{x^2 + z^2}}{d} \right ]^2 }} \\
+
& = ? \\
 +
& = ? \\
 +
& = ? \\
 +
& = ? \\
 +
& = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\
 +
& = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\
 
& = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\
 
& = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\
 
& = \sin \left( 2 \theta_s \right)
 
& = \sin \left( 2 \theta_s \right)
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 17:43, 29 December 2015

TSAXS 3D

The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:

The momentum transfer components are:

And, of course: