Difference between revisions of "Talk:Scattering"

From GISAXS
Jump to: navigation, search
(later)
(later)
Line 32: Line 32:
 
</math>
 
</math>
  
====later====
+
====Check====
As a check:
+
As a check of these results, consider:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
Line 44: Line 44:
 
     & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\
 
     & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\
 
     & = \frac{x^2}{d^2+x^2}  \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f }  \\
 
     & = \frac{x^2}{d^2+x^2}  \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f }  \\
     & = \frac{x^2}{d^2+x^2}  \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\
+
     & = \frac{x^2}{d^2+x^2}  \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f }
& = ? \\
+
\end{alignat}
& = ? \\
+
</math>
& = ? \\
+
We note that:
& = ? \\
+
::<math>
& = ? \\
+
\begin{alignat}{2}
& = \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} \\
+
\cos \theta_f & = \frac{1}{\sqrt{1 + (x/d)^2}} \\
 +
    & = \frac{d^2}{\sqrt{d^2+x^2}}
 +
\end{alignat}
 +
</math>
 +
 
 +
Continuing:
 +
:<math>
 +
\begin{alignat}{2}
 +
\frac{q^2}{k^2}
 +
    & = ? \\
 +
    & = ? \\
 +
    & = ? \\
 +
    & = ? \\
 +
    & = ? \\
 +
    & = \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} \\
 
\frac{q}{k} & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\
 
\frac{q}{k} & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\
& = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\
+
    & = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\
& = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\
+
    & = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\
& = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\
+
    & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\
 
q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right)
 
q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right)
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 18:18, 29 December 2015

TSAXS 3D

The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:

The momentum transfer components are:

Check

As a check of these results, consider:

We note that:

Continuing: